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Preface

Formal Concept Analysis (FCA) is a mathematical theory of concepts and con-
ceptual hierarchy leading to methods for conceptually analyzing data and knowl-
edge. The theory itself strongly relies on order and lattice theory, which has been
studied by mathematicians over decades. FCA proved itself highly relevant in
several applications from the beginning, and, over the last years, the range of
applications has kept growing. The main reason for this comes from the fact that
our modern society has turned into an “information” society. After years and
years of using computers, companies realized they had stored gigantic amounts
of data. Then, they realized that this data, just rough information for them,
might become a real treasure if turned into knowledge. FCA is particularly well
suited for this purpose. From relational data, FCA can extract implications, de-
pendencies, concepts and hierarchies of concepts, and thus capture part of the
knowledge hidden in the data.

The ICFCA conference series gathers researchers from all over the world,
being the main forum to present new results in FCA and related fields. These
results range from theoretical novelties to advances in FCA-related algorithmic
issues, as well as application domains of FCA. ICFCA 2008 was in the same
vein as its predecessors: high-quality papers and presentations, the place of real
debate and exchange of ideas. ICFCA 2008 contributed to strengthening the
links between theory and applications.

The high quality of the presentations was the result of the remarkable work
of the authors and the reviewers. We wish to thank the reviewers for all their
valuable comments, which helped the authors to improve their presentations.
Selecting the papers was a tough job in these conditions. We are grateful to the
members of the Program Committee and of the Editorial Board for giving their
valuable advice.

The Conference Chair of ICFCA 2008, held at the Université du Québec à
Montréal (Canada), was Robert Godin. He did a tremendous amount of work
before and during the conference to make it a real success. He was helped in this
task by his tireless and cheerful colleagues: Rokia Missaoui, Petko Valtchev, and
Mehdi Adda. They contributed considerably to the success of the conference as
well as to its friendly atmosphere. In the name of all of the participants, we wish
to express here our warmest thanks to them.

February 2008 Raoul Medina
Sergei Obiedkov
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Le Fonds Québécois de la Recherche sur la Nature et les Technologies du Québec
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Analysis of Social Communities with Iceberg and Stability-Based
Concept Lattices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 258

Nicolas Jay, François Kohler, and Amedeo Napoli

Formal Concept Analysis Enhances Fault Localization in Software . . . . . 273
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Communicative Rationality,

Logic, and Mathematics�

Rudolf Wille

Technische Universität Darmstadt, Fachbereich Mathematik,
Schloßgartenstr. 7, D–64289 Darmstadt
wille@mathematik.tu-darmstadt.de

Abstract. In this article the following thesis is explained and substan-
tiated: Sense and meaning of mathematics finally lie in the fact that
mathematics is able to support the rational communication of humans.
The essence of the argumentation is that the effective support becomes
possible by the close connection between mathematics and logic (in the
sense of Peirce’s late philosophy) by which, in his turn, the commu-
nicative rationality (in the sense of Habermas’ theory of communicative
action) can be activated. How such a support may be concretely per-
formed shall be illustrated by the development of a retrieval system for
the library of the Center of Interdisciplinary Technology Research at
Darmstadt University of Technology.

Contents
1. The Impact of Mathematicts by Logic: An Example
2. Communicative Rationality and Logic
3. Communicative Mathematics

1 The Impact of Mathematicts by Logic: An Example

Sense and meaning of mathematics finally lie in the fact that mathemat-
ics is able to support the rational communication of humans.

To explain and to substantiate that thesis is the concern of this article (cf.
[Wi02b], [Wi02c]). First, an example shall make clear how mathematics could
have a lasting effect on the rational communication by transforming mathemat-
ical forms of thinking into logical thinking. Already in [Wi01b], the close con-
nection of logical and mathematical thinking has been seen as the central reason
that mathematics is able to effectively support the rational thinking and act-
ing. Logical thinking as expression of human reason grasps the actual reality in
the basic forms of thinking: concept, judgment, and conclusion, while, according
to Ch. S. Peirce ([Pe92], p.121), mathematical thinking abstracts from logical
thinking to make accessable a cosmos of forms of potential reality. Therefore

� This article is an English version of the german publications [Wi02b] and [Wi02c].

R. Medina and S. Obiedkov (Eds.): ICFCA 2008, LNAI 4933, pp. 1–13, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



2 R. Wille

it is possible for mathematics as a historically, socially, and culturally deter-
mined formation of mathematical thinking, respectively, to support humans in
their logical thinking and with it in their rational communication. How such
a support could be established shall first be illustrated by the development of
a retrieval system for the library of the Center of Interdisciplinary Technology
Research (ZIT) at Darmstadt University of Technology.

In this project the mathematical theory of formal concept analysis [GW99],
which can be understood as applied lattice theory (cf. [Wi07a]), was activated.
Formal concept analysis is founded on a mathematization of concept, the most
simple basic form of human thinking (cf. [Ka88], [Se01]). This mathematization
is based on the understanding that a concept is determined by a concept extent
and a concept intent; the concept extent consists of all objects falling under
the concept and the concept intent consists of all attributes which apply to all
those objects. For phrasing this concept understanding in the set language, the
mathematical notion of a formal context has been introduced as a set structure
(G, M, I) for which G and M are sets and I is a binary relation with I ⊆ G×M ;
the elements of G are called objects and the elements of M are called attributes,
and gIm is read: the object g has the attribute m. A formal concept of (G, M, I) is
now defined as a pair (A, B) with A ⊆ G, B ⊆ M , A = {g ∈ G | ∀m ∈ B : gIm},
and B = {m ∈ M | ∀g ∈ A : gIm}. The subconcept–superconcept–relation is
mathematized by (A, B) ≤ (C, D) :⇔ A ⊆ C (⇔ B ⊇ D). With respect to this
order relation, the set of all formal concepts of (G, M, I) form a complete lattice,
the so-called concept lattice of the formal context (G, M, I).

Members of the Darmstadt “Research Group on Formal Concept Analysis”
started the development of the retrieval system for the ZIT-library in 1991,
which was finished in 1996 (see [RW00]). It needed several experiments until a
successful approach was found for the project. For instance, common retrieval
methods turned out to be unsatisfactory because of the broad interdisciplinarity
of the documents in the library. Therefore, a specific normed vocabulary was de-
veloped for a satisfactory content extraction of the documents. In the average,
32 catchwords from the normed vocabulary were assigned to each document,
which yielded a very good substitute for an abstract for each document. The
assignments, stored in a relational database, gave rise to a large cross table with
1554 documents as objects indicating the rows of the table and with 337 catch-
words as attributes indicating the columns of the table. In that table the crosses
indicate which catchword is assigned to which document. Mathematically, such
a cross table is understood as a formal context whose concept lattice represents
a hierarchy of concepts.

The line diagram in Fig. 1 represents a concept lattice which was the result
of a conceptual search in the ZIT-library. Its five attributes are named “division
of work”, “rationalization”, “automation”, “mechanization”, and “production”.
The concept having the intent which consists of the first four of the listed at-
tributes has three objects named by the document titles “work and technics
in a social process”, “information technology: a luddite analysis”, and “on the
handling of machines”; most object names are only replaced by the number of
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Fig. 1. Conceptual search structure of the theme “change of production”

objects of the corresponding concept to make the diagram better readable (the
implementation allows to make the hidden names visable by clicking on the
circles of the concepts, respectively).

The line diagram in Fig. 1 is understood as the conceptual search structure
named “change of production” and determined by the listed five attributes. In
general, 137 named conceptual search structures, also understood as “conceptual
views”, have been created and characterized by a small number of catchwords.
These views cover a great spectrum of themes which allow, using the program
TOSCANA (see [KSVW94],[BH05]), flexible navigations with the prepared sys-
tem of search structures. For example, the marked line diagram in Fig. 2 shows
the resulting structure of the conceptual search structure of the theme “impor-
tant industrial countries” reduced by the two catchwords “rationalization” and
“automation” of the conceptual search structure “change of production”.

As in many other projects of applications - members of the Darmstadt Re-
search Group on Formal Concept Analysis have already performed more than
200 of such projects - , in the discussed project too, mathematical and non-
mathematical thinking have met in logical thinking. Just the reality of a library
with its special needs guided to an understanding of the mathematical structures
and relationships of formal concept analysis as logical structures and relations.
In this way the mathematical operations and connections in formal contexts be-
came logically transparent in the “language” of content representations within
cross tables without special difficulties. Analogously, the “language” of concep-
tual representations in line diagrams could be logically activated for content
interpretations.
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Fig. 2. Conceptual search structure of the theme “important industrial contries” re-
duced by the two catchwords “rationalization” and “automation”

The key idea for the development of the retrieval system was to use line dia-
grams of concept lattices as conceptual search structures for a thematic search
of literature. Those line diagrams show, respectively, a thematically constructed
distribution of the total stock of the literature by which the searcher can learn
to make his requests more precisely. Therewith the line diagrams impart a dif-
ferentiation in the contents of the stock of literature, by which the searcher can
learn to specify more precisely his wishes and to focus further the proceedings
of the search process. The conceptual search structures are means to activate
further expert knowledge beyond the catchwords.

Each conceptual search structures represents a local theory based on a concept-
logical structure. All these local theories are aggregated by the total connection
of the underlying data table to a global theory which may also represented logi-
cally by a line diagram and mathematically by the corresponding global concept
lattice. But it often turns out that the global concept lattice cannot be rep-
resented by a readable line diagram. Therefore smaler theories are approached
which are aggrerated by a few local theories; the example in Fig. 2 combines the
two local theories coded in the conceptual search structures “important indus-
trial countries” and “change of production”.

The full development of the retrieval system for the ZIT-library was a pro-
cess in which not only members of the Darmstadt “Research Group on Formal
Concept Analysis” were involved, but also members of the ZIT, specific experts,
and quite a number of students who, in particular, elaborated and tested the
137 conceptual search structures and their applications to the given stock of
literature. This project could only be successfully mastered because of a high
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level of rational communication between the collaborators which benefited from
the many experiences in working with methods of formal concept analysis over
many years.

2 Communicative Rationality and Logic

After the exemplary report on a project in which mathematics could effectively
support the rational communication between quite different collaborators, the
previously presented thesis shall now be more explicitly explained and founded
on a general level. It will be elucidated that the rational communication is depen-
dent on communicative rationality (in the sense of J. Habermas), which corre-
sponds to a communicative logic (in the sense of Ch. S. Peirce) and subsequently
to a communicative mathematics (in the sense of generalistic science). With this
connection it can be argued that mathematics can activate, via the close link-
age to logic, communicative rationality by which mathematics become able to
effectively support the rational communication of human beings.

Rational communication can only succeed if the participating persons are aim-
ing at an intersubjective communication about the considered circumstances.
According to J. Habermas, it is necessary for this communication that the par-
ticipants “overcome their in the first place only subjective views and, owing to
the common ground of reasonably motivated convictions, ascertain at the same
time the unity of the objective world and the intersubjectivity of their conti-
nuity of life” ([Ha81]; Bd.1, p.28). In this connection a part of the commonly
shared lifeworld has to be made conscious; “lifeworld” is here understood in the
sense of Habermas as consisting of the culturally and socially constituted and
reproduced stocks of knowledge, patterns of interpretations, as well as forms of
action, self-evident conceptions, and convictions of a specific social community
(see also [Wi01a]). The purpose-oriented activation of the lifeworld background
is essential for the reflecting interpretation of situation and world references and
the acquisition of intersubjective consents about such interpretations. Real facts
and their availabilities are not simply given, but they must be interpreted and
explained in mutual agreement.

For the rational communication, a communicative practice is therefore consti-
tutive; this practice is aimed at the achievement, maintenance, and renewal of
consent which rests on the intersubjective acknowledgment of criticizable claims
to validity. According to Habermas, the criticizable claims to validity are not
only constitutive speech acts, but also connected with norm-governed actions
and expressive attitudes. Such actions should have the character of appropri-
ate, in their context understandable declarations; in particular (cf. [Ha81]; Bd.1,
p.35),

– the constitutive speech acts contain the claim to truth of relationships to
facts in the objective world,

– the norm-governed actions contain the claim to rightness of relationships to
legitimate normative contexts in the common social world,



6 R. Wille

– the expressive attitutes contain the claim to truthfulness of relationships to
privileged accessible experiences in the own subjective world, respectively.

The reconstruction of the rationality of action, oriented toward reaching un-
derstanding, guided J. Habermas to the concept of “communicative rationality”
which - in imitation of the characterization of rationality in the “Enzyklopdie
Philosophie und Wissenschaftstheorie” [Ge93] - can be characterized as follows:

Communicative rationality is the ability
– to intersubjectively ascertain oneself of the commonly shared life-

world,
– to reflexively achieve consent about the situation and world refer-

ences,
– to discursively redeem the criticizable claims to validity in refering

to truth, rightness, and truthfulness.

With this the connection of the rational communication with the communicative
rationality can be described as follows: Rational communication can only be
successful if the participants of the communication intersubjectively ascertain
themselves of the lifeworld as background of their intents, if they reflexively and
consensually communicate about the relevant situation and world references,
and if they discursively redeem the claims to validity which are connected with
their intents.

For being able to activate communicative rationality for rational communi-
cation, the participants of communications have to make available lifeworld in-
terpretations, world references, and situation definitions as well as claims to
validity and arguments in forms of human thinking. For this a more intense un-
derstanding of the structure, the forms, and laws of thinking is promotive and
even necessary. According to the “Duden - das große Wörterbuch der deutschen
Sprache” ([Du95], p.2145), the task of logic is to work out and to make avail-
able such an understanding. A philosopher who worked on this task intensively
and convincingly, in particular, is the american scholar Ch. S. Peirce. In his
Cambridge Conferences Lectures “Reasoning and the Logic of Things” (1898)
he characterized the logic as follows ([Pe92], p.116):

Logic is the science of thought, not merely of thought as a psychical
phenomenon but of thought in general, its general laws and kinds.”

As subdiscipline of the scientific philosophy, the logic in Peirce’s understanding
belongs to the positive sciences ([Pe98], p.144), in contrast to mathematics which
is characterized by Peirce as conditional-hypothetical science. While mathemat-
ics develops hypothetical forms of thinking for potential realities, logic as positive
science examines general forms of thinking related to actual realities. However
logic manifoldly adapts mathematical forms of thinking (as, for instance, the
numbers) to apprehend actual realities with them.

For Peirce the central maxime of logic is the “pragmatism” invented by him
([Pe91], p.337ff.); for his pragmatism it is basic to acknowledge the inseparable
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connection between rational knowledge and rational purpose. This acknowleg-
ment is joined with a sense-critical understanding of truth by which nothing is
able to be logically true without a purpose according to which it could be named
in this way (cf. [Ap75], p.175). For the beginning of the search of truth Peirce
sees “only one state of mind from which one can depart, namely exactly the
state of mind in which one is actually located at the time in which one is de-
parting - a state in which one is loaded with an immense mass of already formed
knowledge of which one cannot get rid of, even if one wants” ([Pe91]; p.434).
These individual resp. collective self-evidences and convictions are viewed to be
subjectively resp. intersubjectively true as long as some well-grounded doubt is
turned against them. For Peirce only those doubts make research meaningful,
namely such a research which removes the occasions of the doubts and reaches
new convictions viewed to be true ([Pe91], p.157f). Because of the anchoring of
the convictions in the evolutional self-understandings of humans, Peirce warns
against superficial logical reasoning which does not take into account the human
instinct and feeling ([Pe92], p.110).

As foundation for all forms of logical thinking Peirce has developed his theory
of the categories of firstness, secondness, and thirdness which are defined as
follows (cf. [Pe92], p.147f): Firstness is the mode in which anything would be for
itself, irrespective of anything else. Secondness is the mode in which something
is related to something else, irrespective of any third. Thirdness is the mode in
which the representation of the relation between something and something else
is considered. For instance, Peirce understands the phenomenon of a sign in the
sense of

1. Firstness as an “icon” where the sign is only thought by itself,
2. Secondness as an “index” where the sign related to what it signs is consid-

ered,
3. Thirdness as a “symbol” where a sign is interpreted as a connection between

sign and that what it signs ([Pe91], p.362ff.).

From his three categories Peirce deduced three kinds of logical reasonings: the ab-
duction, the induction, and the deduction. The abduction creates out of the hori-
zon of self-evidences a hypothesis as a First. The induction confirms a hypothe-
sis by facts as Second. The deduction concludes a hypothesis by valid premises
based on logical laws as a Third. This means: “The deduction proves that some-
thing must be the case; the induction shows that something is actually effective;
the abduction simply assumes that something may be the case” ([Pe91], p.400).
Each reasoning falls always under the property of principal criticizability which
is characteristic for the logical thinking of humans. Peirce has expressed this in
a specific way by his “First Rule of Logic”: Logical reasoning tends to correct
itself, not only its conclusions but also its premises ([Pe92], p.165).

To sum up: the close connection of Peirce’s logic to Habermas’ communicative
rationality can be elucidated by the following determination of a “communicative
logic” which reflects to a high degree the comunicative part of the understanding
of logic in Peirce’s late-philosophy:
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Communicative rationality is the part of logic which works toward the
ability
– to intersubjectively ascertain oneself of the socially and culturally

grown self-evidences, convictions, and intensions in logical thinking,
– to achieve first of all sense-critical reflected consents about basic and

situative references of logic to the real world, and
– to reveal for the communicative-rational argumentation logical forms

of thinking, in particular forms of abductive, inductive, and deductive
reasoning.

Since the communicative logic, by its close connection to the communicative
rationality, is able to obtain an intense communicative-rational understanding of
the structure, the forms, and the laws of thinking, one can also succeed with
the communicative logic to effectively support the rational communication of
humans. An even better support may be expected if, more than by Peirce, the
conceptual nature of human thinking, as elaborated by the psychologists J. Pi-
aget ([Pi73]) and Th. B. Seiler ([Se01]) is more respected. This would mean
in particular that one should activate, as basic forms of communicative-logical
thinking,

– the concepts as basic forms of thinking,
– the judgments as assertional connections of concepts, and
– the conclusions as logical inferences between judgments.

3 Communicative Mathematics

After the close connection of rational communication, communicative rational-
ity, and logic has been revealed, it has to be explained in addition how the close
connection of logical and mathematical thinking can be made explicit. For ob-
taining the necessary orientation for this task, the notion of “communicative
mathematics” shall be introduced in correspondence to the notion of commu-
nicative logic.

Communicative mathematics is the part of mathematics which works to-
ward the ability
– to intersubjectively ascertain oneself of the socially and culturally

grown self-evidences, convictions, and intensions in logical thinking,
– to achieve first of all sense-critical reflected consents about basic and

situative references of mathematics to the real world, and
– to closely join mathematical with logical forms of thinking with the

aim to reveal mathematical thinking for the communicative-rational
argumentation.

This determination of communicative mathematics is closely related to ideas
of generalistic science (and therefore also to generalistic mathematics) which
have mainly been developed at the Darmstadt University of Technology in the
last twenty years (cf. [Wi07b]). Generalistic science is understood as the part of
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a scientific discipline, respectively, which is concerned to examine the self-image
of the discipline, its relationship to the world as well as the questions about
sense, meaning, and connection of disciplinary activities. The task is, in particu-
lar, to generally impart suitably restructured disciplinary sciences. According to
H. von Hentig, one can and must perform the necessary restructuring of disci-
plines by patterns which are taken from the general forms of perception, thought,
and action of our civilization “to make them better learnable, available, and
more generally criticizable (i.e. also beyond the disciplinary competence) ([He74];
p.33f.). As by generalistic science, communicative mathematics can particularly
redeem the increasingly required transdisciplinarity. In this connection a form
of resesearch is called “transdisciplinary” if it can be used by disciplines so that
their way of thinking is rationally understandable, disposable, and activailable
beyond their borders, especially for being able to contribute to solve problems
which cannot be mastered by purely disciplinary methods [Wi02a]. How expe-
riences with communicative mathematics show, it is just the transdisciplinary
competence emerging out of communicative mathematics which mathematics
makes effective in rational communication. For making this more understand-
able, the notion of communicative mathematics shall be explicated more com-
prehensively:

Communicative mathematis proceeds on the assumption that the self-
evidences, convictions, and intentions in mathematical thinking arise and live on
by the communicative practice. This communicative-rational process decisively
contributes to the forming of what mathematicians understood by mathematics.
However many mathematicians are scarcely aware of that lifeworld background of
their understanding of mathematics. This has, above all, for the impart of math-
ematics the negative consequence that it is often widely overestimated what of
an explanation of mathematical circumstances can find at all an echo in the
thinking of learners. In the more than 200 application projects which have been
performed by members of the “Research Group on Formal Concept Analysis”
at the TU Darmstadt, we could always again make the experience that the
involved non-mathematicians could hardly grasp and activate the used mathe-
matical concepts and results; however, they could, as a rule, thoroughly handle
the corresponding logical forms of thinking because of the connections to actual
realities, respectively ([Wi01b], p.151ff.). This makes clear how important it is
to ascertain oneself - in the sense of communicative mathematics - of the grown
self-evidences, convictions, and intensions which stand behind the forms of math-
ematical thinking; all that allows to achieve the general impart of mathematical
knowledge and the therefore necessary transformation into logical forms of think-
ing. Useful for this are systematic studies as, for instance, those studies which
Ph. Kitcher carried out in his book “The Nature of Mathematical Knowledge”
[Ki84] (in particular from a historical point of view).

Communicative mathematics proceeds from the view that basic and situa-
tive references to the world are constitutive and meaningful. To achieve a sense-
critical reflected consent in the community of scientists is therefore a central task
of communicative mathematics. Frequently it is underestimated how difficult it
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is to make sense-critically understandable the relationships between abstract
mathematics and real facts and circumstances. Therefore mathematizations of
real connections remain to often ineffective or are uncritically applied, which
leads in quite a number of instances to hardly useful, even misleading results. As
a negative example it shall only be mentioned here the mathematization of psy-
chical “factors” by coordinate axles of euclidean spaces using “factor analysis”
which, according to the reputed statistician L. Guttman, has not produced any
established empirical knowledge despite multifarious applications over 70 years
of research [Gu77] (cf. also [Wi95], Exkurs 1). The extensive research on “repre-
sentational measurement theory” has been developed completely in the sense of
communicative mathematics; this research elaborates as its basic results mean-
ingful mathematical structures of measurement for appropriate interpretations of
empirical data [K+71]. More generally as measurement theory, “formal concept
analysis” proceeds by mathematically representing concept structures inherent
in data (based on a contextual mathematization of concept and concept hier-
archy); furthermore, those concept structures can be successfully visualized by
diagrams [GW99]. By this approach the logical thinking of the persons concerned
are activated to achieve consent about the material content of the data and to
reach with further (mathematical and logical) means purposeful interpretations
of the data. Formal concept analysis has been developed in connection with the
efforts for a generalistic science which, in particular, has led to a meaningful
piece of communicative mathematics.

Communicative mathematics proceeds from the view that mathematical
thinking can effectively support the communicative-rational argumentation via
the corresponding logical thinking. Therefore a further task of communicative
mathematics lies in joining mathematical and logical forms of thinking with
each other so that the mathematics can be made usable for the communicative-
rational argumentation via suitable logical forms of thinking. For systematically
reaching a close connection between mathematical and logical thinking, a nat-
ural approach is to mathematize the basic forms of logical thinking: concepts,
judgments, and conclusions, and - based on that - to mathematically abstract
further logical forms of thinking so that many mathematical theories can be
activated as well as possible. For this the first step is done by the already well
developed elaboration of a “contextual logic” (see [Wi97], [Pr98], [Wi00], [Pr00],
[Wi02d], [Da03], [Wi04], [DK05], [Kl05], [Wi07c]) for which

– the mathematical doctrine of concepts is borrowed from formal concept anal-
ysis,

– the mathematical doctrine of judgments (building up on the doctrine of for-
mal concepts) is developed by mathematizing J. Sowa’s theory of conceptual
graphs (see [So84]),

– the mathematical doctrine of conclusions is taken up from Peirce’s reasoning
with existential graphs as well as the usual reasoning of mathematical logic.

Even if further steps have already been made to substantially include further
mathematical disciplines as algebra, geometry, and topology, much remains to
be done for the development of communicative mathematics. In any case, all
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those connections must descriptively impart the mathematical forms of thinking
in such a manner that not only deductive, but also inductive and abductive
reasoning as well as actions of thinking in the sense of Peirce’s “First Rule of
Logic” are supported.

On the example in the first section it shall be briefly explained how communica-
tive mathematics may have an effect in the three described aspects. The self-image
of the contemporary mathematics that it needs well-defined set-theoretical basic
forms for the mathematical comprehension of conceptions of thinking has led the
mathematization of concept to introduce the mathematical notion of “formal con-
text” as basic set-theoretical structure and in connection with it the mathematical
notion of “formal concept” and “subconcept–superconcept–relation”. The convic-
tion that structures formed by formal concepts are rewarding for the examination
of mathematical concepts recommends to move the mathematical structure of the
concept lattice of a formal context in the center of the consideration; for this it had
however first to be proved that indeed the set of all formal concepts of a formal
context forms a (complete) lattice with respect to the subconcept–superconcept–
relation. The intention of the contempory research to make understandable the
meaningful mathematical structures to a large extent as much as possible has,
among other developents, produced the theory of “additive” line diagrams of con-
cept lattices (see [GW99], p.75) which has also guided the design of the lattice
diagrams shown in the first section of this article.

For the development of formal concept analysis as applied lattice theory, the
applications in data analysis and conceptual knowledge processing have generally
been constitutive and meaningful; how fruitful this purpose-orientation of math-
ematics was and is, that can be particularly seen by the performed TOSCANA-
projects as, for instance, the project discussed in section 1. In those application
projects of formal concept analysis, mathematical thinking closely joins with
logical thinking which supports the communicative-rational argumentation and,
in particular, an abductive thinking.

To sum up it can be argued: Mathematics as product of human thinking and
communicating finds its sense in the fact that mathematics is meaningful for
humans. Because of its rational abstract nature, mathematics realizes its mean-
ingfulness by the effective support of rational communication of humans. This
support is made possible by the close connection of mathematical and logical
thinking, namely a logical thinking which activates the communicative rational-
ity in human thinking and acting. Mathematics can therefore gain sense and
meaning if mathematicians and users of mathematics make an effort to obtain a
deeper understanding of communicative logic and communicative mathematics.
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Konzepte, Analysen, Erfahrungen, pp. 73–84. Agenda-Verlag, Münster
(2002)

[Wi02b] Wille, R.: Kommunikative Rationalität und Mathematik. In: Prediger,
S., Siebel, F., Lengnink, K. (Hrsg.) Mathematik und Kommunikation,
pp. 181–195. Verlag Allgemeine Wissenschaft, Mühltal (2002)

[Wi02c] Wille, R.: Kommunikative Rationalität, Logik und Mathematik. Math.
Semesterberichte 49, 167–183 (2002)

[Wi02d] Wille, R.: Existential concept graphs of power context families. In:
Priss, U., Corbett, D.R., Angelova, G. (eds.) ICCS 2002. LNCS (LNAI),
vol. 2393, pp. 382–395. Springer, Heidelberg (2002)

[Wi04] Wille, R.: Implicational concept graphs. In: Wolff, K.E., Pfeiffer, H.D.,
Delugach, H.S. (eds.) ICCS 2004. LNCS (LNAI), vol. 3127, pp. 52–61.
Springer, Heidelberg (2004)

[Wi07a] Wille, R.: Formal concept analysis as applied lattice theory. In:
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1 INSA-Lyon, LIRIS CNRS UMR5205, F-69621 Villeurbanne cedex, France
2 UMR INRA/INSERM 1235, F-69372 Lyon cedex 08, France

{Firstname.Name}@insa-lyon.fr

Abstract. The last few years, we have studied different set pattern min-
ing techniques from binary data. It includes the computation of formal
concepts to support various knowledge discovery processes. For instance,
when considering post-genomics, we can exploit Boolean data sets that
encode a relation between some genes and the proteins that may regu-
late them. In such a context, it appears interesting to exploit the analogy
between a putative transcriptional module (i.e., a typically important hy-
pothesis for gene regulation understanding) and a formal concept that
holds within such data. In this paper, we assume that knowledge nuggets
can be captured by collections of formal concepts and we discuss the
challenging issue of mining/selecting actionable patterns from these col-
lections, i.e., looking for relevant patterns that really support knowledge
discovery. Therefore, a major issue concerns the computation of complete
collections of formal concepts that satisfy user-defined constraints. This
is useful not only to avoid the computation of too small patterns that
might be due to noise (e.g., using size constraints on both their intents
and extents) but also to introduce some fault-tolerance. We discuss the
pros and the cons of some recent proposals in that direction.

1 Introduction

Many application domains can provide possibly huge boolean matrices whose
rows denote objects and columns denote attributes (see Table 1 for toy exam-
ples). Mining such binary data, or formal contexts in the terminology of Formal
Concept Analysis (FCA) [1], has been studied extensively. Indeed, popular data
mining techniques have been designed for set pattern extraction (e.g., mining
frequent itemsets or association rules, mining frequent closed itemsets or other
condensed representations of frequent patterns [2,3]). We are interested in bi-set
mining, i.e., the computation of local patterns that are sets of objects and sets
of attributes being somehow “associated”. Clearly, a formal concept is an inter-
esting type of bi-set that satisfy a local constraint: its attribute set (or intent)
is the maximal set of attributes that are true for each object of its associated
supporting set of objects (or extent). Here, locality refers to the fact that check-
ing whether a bi-set is a formal concept or not can be performed independently
of the other patterns holding in the data. An example of a formal concept in
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r1 from Table 1 is ({o1, o2, o3, o4}, {p1, p2}). Notice that this paper does not
consider FCA as such and that, for instance, we are not really interested in
the underlying concept lattice itself. Instead, we consider collections of formal
concepts as collections of patterns. Also, we do not use formal concepts as con-
densed representations for collections of association rules (see [4] for a recent
survey covering such issues).

Table 1. r1 (left) - r2 (right)

p1 p2 p3 p4

o1 1 1 0 0
o2 1 1 0 0
o3 1 1 0 0
o4 1 1 1 1
o5 0 0 1 1
o6 0 0 1 1

p1 p2 p3 p4

o1 1 1 0 0
o2 1 0 1 0
o3 1 1 0 1
o4 1 1 1 1
o5 0 0 1 0
o6 0 0 1 1

Let us introduce a couple of motivating applications for our perspective on
formal concept mining (see, e.g., [5]). The objects can denote biological samples
and the attribute can denote boolean gene expression properties, e.g., the fact
that a given gene is over-expressed in a given sample. In such a case, the boolean
properties have to be derived from the continuous values measured by, e.g., the
microarray technology, and a formal concept provides an hypothesis on a maxi-
mal group of genes that have the same expression property in a given group of
biological samples. A second example would be to consider that some transcrip-
tion factors (i.e., the proteins which regulate gene expression) are the studied
objects for which we record whether they can bind or not on the promoter se-
quence of some studied genes. Here again, a formal concept can be interpreted as
an hypothesis on a maximal set of genes whose co-expression might be explained
by its associated set of transcription factors. Clearly, one of the motivations for
collecting gene expression data is indeed to be able to discover such hypothesis
that correspond, from a biological perspective, to putative synexpression groups,
transcription modules, regulation pathways, etc.

In this paper, we are interested in the various application domains for which,
given a binary data set, one can consider that its formal concepts are a priori
interesting statements about the data. In theory, computing formal concepts
is exponential in the smallest dimension of the data matrix (i.e., the number
of objects or the number of attributes). An important question concerns the
tractability of their computation for practical applications. Given the major ef-
fort of the last decade, it turns out that computing collections of formal concepts
that hold in large binary matrices can be feasible. Researchers have designed al-
gorithms that compute complete collections of formal concepts [6]. Since these
patterns are built on closed sets, the extensive research on (frequent) closed set
extraction has inspired constraint-based mining of formal concepts (see, e.g.,
[7]): every formal concept which furthermore satisfies a size constraint on one of
its components (e.g., a minimal size for its intent or its extent) can be extracted
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efficiently. This is however not really satisfactory when considering that our ulti-
mate goal is to mine actionable patterns, i.e., relevant formal concepts that can
indeed be interpreted by human experts to catalyze knowledge discovery. Real
data sets can hold hundreds of thousands of formal concepts: it is clear that look-
ing for actionable ones among the many spurious or irrelevant ones is extremely
hard or even impossible. In fact, it is interesting to look at one fundamental
limitation of Knowledge Discovery processes based on formal concepts. Within
such local patterns, the strength of the association of the two set components
is often too strong in real-life data. Indeed, errors of measurement and boolean
encoding techniques can lead to “erroneous” zero or one values. Unexpected zero
values give rise to a combinatorial explosion of the number of formal concepts
because interesting patterns are split into less relevant ones. For example, let us
consider the data from Table 1. Assume that r1 is a reliable representation of a
phenomenon but that data collection and preprocessing lead to r2 instead (i.e.,
some noise has been introduced), the number of formal concepts in r2 is approx-
imately twice larger than in r1. While this concerns zero values that may be one
values, we can also consider what happens in the reverse situation: the intuition
is that when some zero values have been encoded as one values by error, many
“small” formal concepts may hold. Therefore, we need to avoid computing too
small patterns but also we have to somehow relax that no exception (zero value)
can be accepted, i.e., what we call fault-tolerance. For instance, a bi-set like
({o1, o2, o3, o4}, {p1, p2}) is not a formal concept in r2 but it may be considered
as a relevant pattern: its objects and attributes are strongly associated (only one
zero value) and, furthermore, its “outside” objects and attributes contain more
than one zero value.

Our contribution here is to consider how some data mining researchers have
designed more or less pragmatic methods to address these problems. We avoid to
produce the technical details that are available from the referenced papers. We
will discuss the DMiner proposal for constraint-based mining of formal concepts
in the challenging case where, for instance, we want to “push” size constraints
on both dimensions [8,5]. We will also consider different approaches for designing
fault-tolerant patterns based on formal concepts [9,10,11]. The survey paper [12]
is a discussion on the needed trade-off between extraction feasibility, complete-
ness, relevancy, and ease of interpretation of such fault-tolerant pattern types.
Notice also that [12] contains empirical results on both synthetic and real data.

Section 2 discusses the DMiner solution for constraint-based mining of formal
concepts. In Section 3, we consider the obstacles and present some available
solutions for actionable pattern discovery based on formal concepts. Section 4
briefly concludes on some current open issues in that area.

2 Formal Concept Mining

Let O denotes a set of objects and P denotes a set attributes (or properties). In
Table 1, O = {o1, · · · , o6} and P = {p1, · · · , p4}. A data set is the materialization
of a binary relation r ⊆ O × P . We write (oi, pj) ∈ r to denote that property
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j holds for object i. Boolean matrices like r1 and r2 in Table 1 are classical
representations for such relations.

Formal concepts can be considered as bi-sets, i.e., couples of sets (X, Y ) from
2O × 2P that satisfy a constraint denoted CFC(X, Y ). The definition of such a
constraint might be expressed in terms of Galois operators and closures. In this
paper, let us specify it in terms of the conjunction of a density constraint (first
conjunct) and a relevancy constraint (second and third conjuncts), following the
presentation from [11].

Definition 1 (Formal Concept). A bi-set (X, Y ) ∈ 2O × 2P is a formal con-
cept in r if it satisfies the constraint CFC(X, Y ) ≡ (∀x ∈ X, ∀y ∈ Y (x, y) ∈
r) ∧ (∀x ∈ O \ X, ∃y ∈ Y s.t. (x, y) �∈ r) ∧ (∀y ∈ P \ Y, ∃x ∈ X s.t. (x, y) �∈ r).

Informally, it means that for a formal concept (X, Y ), if we perform permu-
tations of rows and columns such that all the elements from X (resp. Y ) are
contiguous, we observe a maximal rectangle of true values (no zero value in-
side, at least one zero value outside). Another useful analogy to understand the
semantics of formal concepts is to consider them as bi-cliques in the bi-partite
graphs represented by the boolean matrix. Computing every formal concept that
holds within a boolean matrix is NP-hard. As soon as none of the dimensions is
small, this extraction task is not feasible. Furthermore, when the computation is
tractable, we often get a huge amount of formal concepts (e.g., millions) even in
rather small data sets. As we mentioned in our introduction, this is definitively
not acceptable for actionable pattern discovery. Constraint-based mining is a
partial but impressive solution to both problems, i.e., computational complexity
and relevancy. The idea is that the analyst can often exploit some background
knowledge to specify declarative constraints that may hold for the extracted for-
mal concepts of interest. It happens that some of these user-defined constraints
can be exploited (say “pushed deeply”) by the mining algorithm to prune ef-
ficiently the search space. For example, we may need patterns with a minimal
number of elements on both dimensions (a counterpart of the popular minimal
frequency constraint for itemset mining [13]) and/or patterns covering at least
a given number of elements of r (intuitively, a minimum area constraint for the
associated “rectangle”). As a result, when considering knowledge discovery pro-
cesses based on formal concepts, we are generally computing collections of bi-sets
that satisfy not only CFC but also a user-defined constraint CUD:

{(X, Y ) ∈ 2O × 2P | CFC(X, Y ) ∧ CUD(X, Y )}
Figure 1 provides examples of well-known user-defined constraints where α

and β denote some thresholds, a ∈ O, b ∈ P , E ⊆ O, and E′ ⊆ P are constraint
parameters. For instance, C1

size ∧ C2
size or Carea are two different constraints to

specify that patterns have to be “large enough”. Also, Cmean is just one example
of a constraint which enforces that the average of an external positive value
associated to each element of the extent is greater than a given threshold.

Not every constraint can be processed efficiently. We have a special interest
for monotonic and anti-monotonic constraints (see Definition 2) that have nice
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CUD(X, Y )

C1
size ≡ |X| > α

C2
size ≡ |Y | > α

Carea ≡ |X| × |Y | > α
Cmean ≡

∑
i∈X V al+(i)/|X| > α

Cmember ≡ a ∈ X ∧ b ∈ Y
Cinter ≡ |X ∩ E| > α ∧ |Y ∩ E′| < β

Fig. 1. Examples of interesting constraints on bi-sets

properties when the search space is organized as a lattice structure thanks to a
specialization relation.

Definition 2 (Monotonic constraints). A constraint C is anti-monotonic
w.r.t. the specialization order 	 on E iff ∀a, b ∈ E s.t. a 	 b then ¬ C(a) ⇒
¬ C(b). C is monotonic w.r.t. 	 iff ∀a, b ∈ E s.t. a 	 b then ¬ C(b) ⇒ ¬ C(a).

Following a path in an enumeration tree for candidate patterns, an anti-
monotonic constraint is satisfied for all the patterns before a specific pattern
and not satisfied afterwards. A popular example is the anti-monotonicity of a
minimal frequency constraint which specifies that the size of the extent has to
be greater than a given threshold (i.e., C1

size). This constraint can efficiently re-
duce the search-space and remove spurious patterns whose extent is too small.
However, in the many applications where the data set is large on both dimen-
sions and when the density in terms of true values is high, the only way to
achieve tractability seems to be an increase of the minimal size threshold for
the extent. Doing so, we clearly loose a priori interesting formal concepts (the
larger the extent, the smaller the intent, and vice versa). Therefore, we may
want to use other constraints like, for example, minimal size constraint on both
the intents and the extents, i.e., conjunctions C1

size ∧ C2
size. Unfortunately, using

the standard enumeration on formal concepts (enumeration of the intent and
computation of the extend), most algorithms can only exploit anti-monotonic
constraints on the intent and monotonic constraints on the extent, i.e., a con-
junction like |X | > α ∧ |Y | < β (say C1

size ∧ ¬ C2
size). Furthermore, it is not

that simple to exploit constraints like Carea, Cmean, Cmember, and Cinter . Even
though they can be used to capture important expectation from the analysts,
these constraints are neither anti-monotonic nor monotonic.

The DMiner algorithm is a depth-first search algorithm inspired by both
Ganter’s algorithm [14] and DualMiner [15]. The principle of Ganter’s algo-
rithm enables to identify from an extracted formal concept the smallest formal
concept that may follow it. Doing so, we can avoid the generation of many
sets that are not closed, i.e., which can not correspond to formal concepts.
On the other hand, for efficiency purposes, we have to follow the order re-
lated to the standard set inclusion. Given the data from Table 2, it is far
more efficient to generate the formal concept ({o1, o2, o3}, {p1, p2, p3, p4})
from ({o1, o2, o3, o5}, {p1, p3}) than from ({o2, o3, o4}, {p9, p10}). The pattern
({o1, o2, o3, o5}, {p1, p3}) already contains a lot of information that can be used to
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Table 2. A boolean context r3

Attributes

p1 p2 p3 p4 p5 p6 p7 p8 p9 p10

o1 1 1 1 1 0 1 1 0 0 0
o2 1 1 1 1 0 0 0 0 1 1
o3 1 1 1 1 0 0 0 0 1 1
o4 0 0 0 0 1 1 1 1 1 1
o5 1 0 1 0 1 1 1 1 0 0

generate ({o1, o2, o3}, {p1, p2, p3, p4}), e.g., we know that ({o1, o2, o3}, {p1, p3})
holds in r3 because it is “included” in ({o1, o2, o3, o5}, {p1, p3}) which is a formal
concept.

It means that we do not have to scan all the data corresponding to the new
patterns to be extracted. In our running example, we only need to scan the data
corresponding to ({o1, o2, o3}, {p2, p4}). It is even more crucial when large data
sets are considered. Thus, we adopt a binary enumeration of the smallest set (O
or P) and the other set is computed by means of the Galois connection. This
enumeration combines both Ganter’s principle and a prefix-based enumeration.

It is important to exploit constraints not only to increase the relevancy of
the computed patterns but also to increase computational efficiency. Most of
the available algorithms can push monotonic and/or anti-monotonic constraints
according to set inclusion on one dimension. We however argued in the previ-
ous section that this is not enough. Unlike most of the formal concept mining
algorithms, DMiner does not consider that each candidate is only represented
by means of two sets, i.e., the intent and the extent. The enumerated set, let
us say the intent, is split into two sets, the first one representing the set of ele-
ments that belong to any formal concept extracted from the current candidate
and the second one containing the elements that still have to be enumerated
(see the inspiring principle in [15]). The two sets are the bottom and the top of
a lattice which represents the current search space. For example, we may have
a candidate (o1o2o3o5, (p1, p1p2p3)) where the intent is represented by two sets
{p1} and {p1p2p3} instead of only one set {p1p2p3}. By this way during the enu-
meration we always know precisely which search-space is related to the current
candidate and thus increase the number of constraints the algorithm can handle.
In our example the candidate is supported by the extent {o1, o2, o3, o5} and it
represents all the attribute sets Y (intents) such that {p1} ⊆L Y ⊆L {p1, p2, p3}
where (X, Y ) ⊆L (X ′, Y ′) ⇒ X ⊂ X ′ ∧ Y ⊂ Y ′, i.e., the attribut sets {p1},
{p1, p2}, {p1, p3} and {p1, p2, p3} in our example. Notice that a candidate of the
form (O, (X, X)) denotes the bi-set (O, X).

This pattern representation enables to push a larger class of constraints than
only the anti-monotonic constraints. Indeed, each candidate denotes a search
space in the form of an attribute lattice with its associated object set. For exam-
ple, let us consider candidate C = (o1o2o3o5, (p1, p1p2p3p4)) in r3, each formal
concept derived from C which contains p1 contains at most the attributes from
{p1, p2, p3, p4} and its associated object set is included in {o1, o2, o3, o5}. It
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enables to push difficult constraints like Carea and Cmean which are neither mono-
tonic nor anti-monotonic. Indeed, since we have an attribute lattice, we can com-
pute bounds for some constraints. For instance, we can see that the area of C is
between |{o1, o2, o3, o5}|×|{p1}| = 4 and |{o1, o2, o3, o5}|×|{p1, p2, p3, p4}| = 16.
If we are looking for formal concepts with an area of size at least 17 or of size at
most 3, then pattern C can be pruned safely, i.e., it can not lead to acceptable
formal concepts.

We adopted simple arrays as data structure to store the sets of objects and
attributes. A time complexity analysis shows that it is as efficient as the other
more complex data structures used in depth-first search algorithms. Finally,
to check whether a set X is closed, DMiner does not have to scan all the
sets from P \ X . Indeed, only attributes which have been removed from the
search space by enumeration have to be checked. Instead of going into much
details, let us provide two DMiner executions (see Figure 2 and Figure 3) on
the data sets given in Table 3. In Figure 2, the algorithm starts with the candi-
date (o1o2o3, (∅, p1p2)) representing the set of all possible patterns of r4. Then
the attribute p1 is selected to proceed the enumeration. Two new candidates
(o1o2o3, (∅, p2)) and (o1o2o3, (p1, p1p2)) are generated. After enumerating the
attribute p2, four formal concepts are extracted (o1o2o3, ∅), (o1o2, p2), (o2o3, p1)
and (o2, p1p2). Figure 3 provides an other example of DMiner execution.

To investigate the efficiency of DMiner, we studied its complexity using the
time delay, i.e., the complexity to go from one solution to the next one [16].
DMiner time delay is in the worst case equal to O(n2m) where n is the size of the
enumerated set and m is the size of the other one. This complexity is the same as

Table 3. Extraction contexts r4 (left) and r5 (right)

p1 p2

o1 0 1

o2 1 1

o3 1 0

p1 p2 p3

o1 0 0 1

o2 0 1 0

o3 1 0 1

(o1o2o3, (∅, p1p2))

p1

(o1o2o3, (∅, p2))

p2

(o1o2o3, (∅, ∅)) (o1o2, (p2, p2))

(o2o3, (p1, p1p2))

p2

(o2o3, (p1, p1)) (o2, (p1p2, p1p2))

Fig. 2. Formal concept extraction on r4
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((∅, o1o2o3), p1p2p3)

o1

((∅, o2o3), p1p2p3)

o2

((∅, o3), p1p2p3)

o3

((∅, ∅), p1p2p3) ((o3, o3), p1p3)

((o2, o2o3), p2)

((o2, o2), p2)

((o1, o1o2o3), p3)

o2

((o1, o1o3), p3)

((o1o3, o1o3), p3)

((o1o2, o1o2o3, o1o2o3), ∅)

Fig. 3. Formal concept extraction on r5

for Ganter’s algorithm [14]. The time delay in average is O(n−log2(K)+1)O(mn)
where K is the number of formal concepts in the data set. It is between O(nm)
and O(n2m) according to K. This is an interesting result when considering the
use of DMiner on data sets in which many formal concepts hold.

To refer to one concrete example, let us recall the application described in [5].
It concerns the analysis of a data set that records (a) the existence of putative
binding sites of 94 transcription factors on the promoter sequences of 304 genes
(selection of human genes), and (b) the over-expression property of these same
genes in 10 biological simples (individuals). In other terms, the boolean context
implies 104 objects (94 transcription factors and 10 biological situations, more
precisely 5 for healthy individuals and 5 for diabetic patients) and 304 genes.
Formal concept discovery from such a boolean context is already hard. Notice
also that the obtained boolean context was rather dense in terms of true values
(17% of the cells containing a true value). In such a situation, even efficient
algorithms for mining frequent closed sets can turn to be intractable. This data
set is particular: there are very few frequent formal concepts with a relative
frequency threshold above 0.1 on genes (5 534 patterns) and then the number of
formal concepts increases very fast. Without any constraint, we get more than
five million formal concepts within a few minutes. In this context, extracting
actionable formal concepts needs for a very low frequency threshold, otherwise
almost no formal concept can be computed. Notice that actionable patterns
corresponding to interesting biological hypothesis have been found by means of
formal concepts holding in this data set [16,5].

Figure 4 shows the running time of formal concepts extractions in the biolog-
ical data set with varying the minimal frequency threshold. The competitors in
the experiment are three different algorithms used for computing frequent closed
sets, namely ac-miner [17], closet [18] and Charm [19].
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Fig. 4. An application [5]

3 Looking for Actionable Patterns

Let us now come back on our main goal that is actionable pattern discovery
based on collections of formal concepts. The challenge is to mine relevant formal
concepts that can indeed be interpreted by human experts to catalyze knowl-
edge discovery. In case this is not possible, we may also look for application-
independent and/or application-dependent post-processing techniques that can
be applied on formal concepts to support the discovery of actionable patterns.

– When, among other things, a data set captures correctly a phenomenon of
interest, collections of formal concepts can be huge and they may contain
large collections of spurious patterns (false positives) and/or irrelevant pat-
terns w.r.t. domain knowledge. This is somehow inherent to (unsupervized)
local pattern discovery techniques. The two main directions of research to
improve this situation concern (a) the use of randomization techniques for
statistical validity assessment for the extracted patterns (see, e.g., [20]) and
(b) the use of user-defined constraints to specify subjective interestingness
issues based on domain knowledge (e.g., using Cmember or Cinter primitive
constraints).

– When considering the problem of erroneous true values (the property should
not be satisfied but we record that it is satisfied), assuming that this is
fundamentally rare, many “small” formal concepts may hold. Therefore, we
need to avoid computing these too small patterns by using minimal size or
minimal area constraints (See Section 2). In practice, using these constraints
C1

size, C2
size and/or Carea can be extremely efficient.

– When considering the problem of erroneous false values (the property is
satisfied but we record that it is not satisfied), assuming again that this can
not be too frequent, the number of extracted formal concepts will increase



Actionability and Formal Concepts: A Data Mining Perspective 23

fast w.r.t. what it should be if the data were correct. This is a clear need for
fault-tolerance and we discuss several proposals hereafter (see Section 3.1).

– The number of patterns, even if only relevant ones have been collected, is
indeed a problem. Knowledge discovery needs for human expert assessment
of patterns and browsing or inspecting thousands of patterns is definitively
not possible. The solution can come from (a) the design of pattern databases
and advanced querying tools, and (b) summarization techniques based on, for
instance, clustering methods. Considering problems and solutions for pattern
database management is related to the emergent topic of inductive databases
and will not be discussed further in this paper. Considering summarization
techniques has been successfully applied (see Section 3.2).

3.1 Introducing Fault-Tolerance

We first revisit the definition of formal concepts for a fairly natural introduction
of fault-tolerance. In the following, we say that a bi-set (X, Y ) is included in a
bi-set (X ′, Y ′) denoted (X, Y ) ⊆ (X ′, Y ′) iff (X ⊆ X ′) ∧ (Y ⊆ Y ′).

Definition 3. Assume Zl(x, Y ) denotes the number of false values of an object
x on the attributes in Y , i.e., |{y ∈ Y |(x, y) �∈ r}|. Similarly, let Zc(y, X) =
|{x ∈ X |(x, y) �∈ r}| be the number of false values of an attribute y on the objects
in X.

Definition 4 (FC). A bi-set (X, Y ) ∈ 2O × 2P is a formal concept in r iff
(2.1) ∀x ∈ X, Zl(x, Y ) = 0 ∧ ∀y ∈ Y, Zc(y, X) = 0
(2.2) ∀x ∈ O \ X, Zl(x, Y ) ≥ 1 ∧ ∀y ∈ P \ Y, Zc(y, X) ≥ 1

Sub-constraint 2.1 expresses that a formal concept contains only true values. Sub-
constraint 2.2 denotes that formal concept relevancy is enhanced by a maximality
property. It is now straightforward to introduce a declarative specification of
fault-tolerance.

Definition 5 (DRBS [11]). Given integer parameters δ and ε, a bi-set
(X, Y ) ∈ 2O × 2P is called a DRBS pattern (Dense and Relevant Bi-Set) in
r iff
(3.1) ∀x ∈ X, Zl(x, Y ) ≤ δ ∧ ∀y ∈ Y, Zc(y, X) ≤ δ
(3.2) ∀e ∈ O \ X, ∀x ∈ X, Zl(e, Y ) ≥ Zl(x, Y ) + ε

∧ ∀e′ ∈ P \ Y, ∀y ∈ Y, Zc(e′, X) ≥ Zc(y, X) + ε
(3.3) It is maximal, i.e., � ∃(X ′, Y ′) ∈ 2O × 2P s.t. (X ′, Y ′) is a DRBS pattern
and (X, Y ) ⊆ (X ′, Y ′).

DRBS patterns have at most δ false values per object and per attribute (Sub-
constraint 3.1) and are such that each outside object (resp. attribute) has at
least ε false values plus the maximal number of false values on the inside objects
(resp. attributes) according to Sub-constraint 3.2. The size of a DRBS pattern
increases with δ such that, when δ > 0, it happens that several bi-sets are in-
cluded in each other. Only maximal bi-sets are kept (Sub-constraint 3.3). Notice
that δ and ε can be chosen differently on objects and on attributes. It is clear
that when δ = 0 and ε = 1, DRBS ≡ FC.
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Table 4. A boolean context r6

p1 p2 p3 p4 p5 p6 p7

o1 1 0 1 0 1 0 0

o2 1 1 1 1 0 1 0

o3 0 1 1 1 1 1 1

o4 0 0 0 1 1 1 0

o5 1 0 0 0 0 1 0

o6 1 1 1 1 1 0 0

o7 1 1 1 1 1 0 0

Table 5. Permutations on r6 to illustrate Example 1

p1 p2 p3 p4 p5 p6 p7

o1 1 0 1 0 1 0 0

o2 1 1 1 1 0 1 0

o3 0 1 1 1 1 1 1

o4 0 0 0 1 1 1 0

o6 1 1 1 1 1 0 0

o7 1 1 1 1 1 0 0

o5 1 0 0 0 0 1 0

Example 1. If δ = ε = 1, (X, Y ) = ({o1, o2, o3, o4, o6, o7}, {p3, p4, p5}) is a
DRBS pattern in r6 (see Table 4). Columns p1, p2, p6 and p7 contain at least
two false values on X, and o5 contains three false values on Y (see Table 5).

Collections of DRBS patterns can be computed in rather small data sets by using
the correct and complete algorithm DR-Miner [11]. It is again based on the
Dual-Miner principle [15]. Notice that a preliminary approach for specifying
“symmetrical” fault-tolerant formal concepts had been introduced in [9] (i.e., the
so-called αβ-concepts) and that it has been compared with the DRBS pattern
domain in [12].

Let us now consider a rather different (and say pragmatic) extension of formal
concepts which is not symmetrical. It has been designed thanks to the previous
work on one of the few approximate condensed representations of frequent sets,
the so-called δ-free sets [17]. δ-free sets are some kind of generators whose counted
frequencies enable to infer the frequency of many sets (sets included in their
so-called δ-closures) without further counting but with a bounded error. The
δ-freeness constraint on attributes sets has been formalized in terms of the size
of the supported sets of objects (this so-called frequency has to be different from
the frequency of all its subsets by at least δ). Notice also that the so-called
generators in [21] or key patterns in [22] are special cases of δ-free sets (δ = 0).
The 0-closure is the classical closure operator and applying it on each 0-free set
is one way to produce every closed set and thus every formal concept.

The idea for the so-called FBS patterns (Free set Based Bi-Set) is to consider
bi-sets built on the δ-closure of δ-free attribute sets associated to their supporting
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sets of objects [23,10]. The intuition is that it will provide strong associations
between sets of objects and sets of attributes. To avoid technical details, let us
just comment an example.

Example 2. If δ = 1, {p2} is a 1-free set and ({o2, o3, o6, o7}, {p1, p2, p3, p4, p5})
is a FBS pattern in r6 (see Table 6). The 1-closure of {p2} is {p1, p2, p3, p4, p5}
because p1, p3, p4, and p5 are the attributes which are almost always true (1
exception is accepted) for the objects that have the property denoted by p2, i.e.,
objects o2, o3, o6, and o7.

When δ=0, attribute 0-free sets are the minimal elements of the equivalence
classes of the relation ”has the same supporting set of objects”. Then, the 0-
closure provides a closed set of attributes that associated to its supporting set
of object gives a formal concept. In other terms, when δ = 0, FBS ≡ FC.

Table 6. A permutation on r6 to illustrate Example 2

p1 p2 p3 p4 p5 p6 p7

o2 1 1 1 1 0 1 0

o3 0 1 1 1 1 1 1

o6 1 1 1 1 1 0 0

o7 1 1 1 1 1 0 0

o1 1 0 1 0 1 0 0

o4 0 0 0 1 1 1 0

o5 1 0 0 0 0 1 0

The extraction of FBS patterns can be extremely efficient thanks to δ-freeness
anti-monotonicity. Notice that FBS patterns are bi-sets with a bounded number
of exception per column but every bi-set with a bounded number of exception
per column is not necessarily a FBS pattern.

One crucial issue that can explain the added-value of formal concepts is the
ease of interpretation thanks to the Galois connection. What happens with these
DRBS and FBS extensions? For each bi-set (X, Y ), do we have a function which
associates X and Y ? If a function exists which associates to each set X (resp. Y )
at most a unique set Y (resp. X), the interpretation of each bi-set is much easier.
Furthermore, if the two functions are monotonically decreasing, i.e. when the size
of X (resp. Y ) increases, the size of its associated set Y (resp. X) decreases. This
property is meaningful since the more we have objects inside a bi-set, the less
there are attributes that can be associated to describe them (or vice versa).

In a FBS pattern, we have no function from 2P to 2O but we have a function
from 2O to 2P . The definition of this pattern is indeed not symmetrical. In many
data sets, including huge and dense ones, complete collections of FBS can be
extracted efficiently but we need for a better characterization of more relevant
FBS patterns which might remain easy to extract from huge databases, e.g.,
what is the impact of different δ values for the δ-free-set part and the δ-closure



26 J.-F. Boulicaut and J. Besson

computation? How can we avoid an unfortunate distribution of the false values
among the same objects?

By construction, a DRBS has been defined such that we have a bounded
number of exceptions per object and per attribute. Two interesting properties
have been proven [11,16]. First, when ε > 0, DRBS patterns are embedded by
two functions φ (resp. ψ) which associate to X (resp. Y ) a unique set Y (resp. X).
Then, for a fixed δ, we have monotonicity properties of φ and ψ. Unfortunately,
the functions loose this property on the whole DRBS collection. Furthermore,
we have not identified yet an intentional definition of these functions.

Notice that [12] contains an empirical evaluation of these different pattern
domains on both artificially noised data sets and a real-life medical data set.
These extensions of formal concepts have been specified in a constraint-based
mining framework, i.e., we have a declarative specification of the constraints on
the patterns such that we can work on correct and complete implementations for
computing them. Notice however that it is computationally challenging to work
with the most elegant extension, i.e., DRBS. Other researchers have considered
fault-tolerant pattern mining. To the best of our knowledge, most of the related
work has concerned mono-dimensional patterns and/or the use of heuristic tech-
niques [24,25]. [26] is one of the interesting proposal for geometrical tile mining
(i.e., dense bi-sets which involve contiguous elements given orders on both di-
mensions). More recently, other attempts to relax closeness have been considered
[27,28]. Fault-tolerance in general and its application to closed sets and formal
concepts in particular definitively appears as an important topic for real-life data
mining. Let us now consider another pragmatic approach for finding actionable
patterns based on collections of formal concepts.

3.2 Post-processing Collections of Formal Concepts

The number of formal concepts which hold in a data set and which can be
computed thanks to, for instance, user-defined constraints, can be huge. We
already pointed out that many factors can have a dramatic impact on the number
of formal concepts. For instance, when an error of measurement or an intrinsic
variability of the observed phenomenon lead to a zero value whereas the value
true should be obtained, we have to face with an explosion of the number of
formal concepts. The fault-tolerant extensions discussed above are definitively
not the ultimate solution: indeed, when tractable, the extractions still provide
too many patterns. One simple idea is to post-process the formal concepts and
more generally the extracted bi-sets to group the ones which are similar enough.
It is rather straightforward to design similarity measures between bi-sets and
one can perform, for instance, a hierarchical clustering method to group formal
concepts. These groups can be interpreted by computing some kind of “quasi-
formal concepts” that are in fact the bi-sets made of the union of the intents
and the union of the extents of all the formal concepts that belong to a cluster
[29]. This has been applied successfully to a real application in the domain of
human gene expression data analysis [30]. In this application, mining a 90×5327
boolean gene expression matrix has given rise to 64 836 formal concepts. When
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considering size constraints that have enforced the formal concepts to imply
at least five biological samples and five genes, only 1 669 patterns have been
selected: this is however too much for a human interpretation for each of them.
We applied the hierarchical clustering and then we have built about 50 quasi-
synexpression groups, i.e., sets of genes strongly associated to sets of biological
samples. One of them has been carefully interpreted and this has given rise to
interesting biological new hypothesis [30].

Following the same ideas, we can also consider the possibility to build clus-
ters or co-clusters by exploiting the formal concepts. A co-clustering (see, e.g.,
[31]) provides linked partitions on both dimensions (objects and attributes) and,
in Boolean data, it tends to compute rectangles with mainly true (resp. false)
values. Heuristic techniques (i.e., local optimization) enable to compute one bi-
partition. In fact, a bi-clustering provides a global structure over the data while
fault-tolerant extensions of formal concepts are typical local patterns which can
lead to the discovery of unexpected but yet relevant local associations. In [32],
co-clusters are computed from collections of bi-sets like formal concepts: it is a
KMeans like clustering that does not work on objects or attributes but on bi-
sets. Notice also that once a bi-partition has been computed, by such a technique
or with another co-clustering approach, we can again use the bi-sets for charac-
terization purposes [10]. Notice that computing clusters or co-clusters based on
formal concepts is different from selecting formal concepts that may constitute
a collection of clusters or co-clusters (see, e.g., [33]).

In a conceptual clustering framework, Mineau et al. [34] present simple pre-
pruning and post-pruning techniques that can be applied in reasonable time on
large classification structures. The paper presents three such techniques: one is
based on the definition of constraints over the generalization language, the other
two are based on discrimination metrics applied on links between classes or on
the classes themselves.

Another interesting relationship that may be studied further is the formal
analogies between tiling as considered in [35] and co-clustering. Also, the quite
active area of subspace clustering is clearly related to local pattern detection
and constraint-based mining of bi-sets (see [36,37] for surveys).

4 Conclusion

We have discussed several aspects of actionable pattern discovery from collec-
tions of formal concepts. Thanks to constraint-based mining algorithms, comput-
ing complete collections of formal concepts that satisfy user-defined constraints
is feasible for some useful constraints. This framework has been used to specify
fault-tolerant extensions of formal concepts. This is definitively needed for min-
ing large and noisy Boolean data sets. The DRBS pattern domain appears as a
well-designed class but the price to pay is its computational complexity. The good
news are that (a) DRBS pattern extractions may involve further user-defined
constraints which can be used for efficient pruning, and (b) one can look for more
efficient data structures and thus a more efficient DR-Miner implementation.
A pragmatic usage could be to extract some bi-sets, e.g., formal concepts, and
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then select some of them (say B = (X, Y )) for further extensions towards fault-
tolerant patterns: the computation of a DRBS patterns (say B′ = (X ′, Y ′))
such that the constraint B ⊆ B′ is enforced. We also mentioned post-processing
techniques that, for instance, cluster patterns like formal concepts not only to
decrease the number of hypothesis that have to be interpreted by human experts
but also to enhance their relevancy, e.g., achieving some kind of fault-tolerance.

Let us now conclude this paper by introducing a few open questions related
to both Formal Concept Analysis and constraint-based mining of patterns.

Constraints and formal concept mining. One important direction of research
remains constraint-based mining of formal concepts for hard constraints, that is
constraints that are neither monotonic nor anti-monotonic and for which new
enumeration strategies have to be designed. Constraints that refer to statistical
measures (e.g., based on standard deviation), are typical examples of such hard
constraints. Even though some types of hard constraints have been studied on
simple pattern domains like itemsets (e.g., optimization constraints that look for
the best k patterns w.r.t. an objective measure), so far, few researchers have tried
to upgrade these algorithms to the 2-dimensional case (i.e., for bi-set mining).
New constraint types must be designed as well. For instance, [38] has proposed
to increase the relevancy of set patterns by means of constraints that exploit
textual resources in the context of biological data analysis. This is a promising
direction of research.

Extensions of formal concepts. The constraint-based mining framework supports
the exploitation of domain knowledge to increase a priori relevancy of patterns.
We notice however that in more and more applications, the data can hardly
be presented as a single binary relation. Let us take an example: assume that
we have genes with a lot of information about them (e.g., functions, associated
transcription factors), biological experiments enabling to measure the expression
of these genes and finally details about the experiments. Consider now that we
want to extract the sets of house-keeping genes that are over-expressed in the
same biological experiments that are related to muscle tissues. The extraction
task sounds like a formal concept extraction, same words same ideas, but here
the data are structured into multiple n-ary relations (n > 2). One hot topic is to
revisit the principles of pattern mining in binary relation when considering n-ary
relations. For instance, the counterpart of formal concepts in cubes (3-ary rela-
tions) has been recently investigated [39,40]. Also, extending the ideas of closed
set and condensed representation mining in a multi-relational setting is a timely
challenge. [41] presents a formal concept analysis-based class hierarchy design
that can be viewed as normal forms for class hierarchies where each normal form
addresses particular design goals. An overview of work in the area is presented
by highlighting the formal concept analysis notions that are involved. [42] intro-
duces a first formalization of a network of contexts, i.e., the data is represented
by the means of several contexts. Descriptions of conceptual coherences within
the formalized network of contexts are introduced.
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Storing and querying collections of patterns. Following the inductive database per-
spective [43,2], patterns may be considered as first-class citizens and we have to de-
sign databases that not only contain data but also patterns like formal concepts or
clustering results. Technically, many challenges concern the efficient management
of large collections of set patterns because relational databases are not targeted
towards this type of data. Also, the design of general-purpose query languages to
support knowledge discovery by means of queries remains an open problem.

Local-to-Global. Many global patterns (e.g., classifiers, clusterings) can be con-
sidered as collections of local patterns that satisfy some kind of global con-
straints. These local patterns are themselves satisfying local constraints. The
popular association-based classification approach [44] is an obvious example of a
Local to Global (L2G) scheme: standard association rules are the local patterns
(i.e., local constraints are the minimal frequency and minimal confidence con-
straints). The various proposals for building classifiers from them are then based
on different global constraints on these collections of association rules. Cluster-
ing can be considered within a L2G framework as well (see, e.g;, [32]). A better
understanding of cross-fertilization between local pattern detection and global
pattern discovery is an extremely active research direction that may deliver in-
teresting insights in the next few years. Among others, the exciting challenge of
constrained clustering may benefit from such a Local to Global approach (see,
e.g., [45] for a constrained co-clustering based on formal concepts).
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38. Kléma, J., et al.: Mining plausible patterns from genomic data. In: Proceedings
IEEE CBMS 2006, Salt Lake City, USA, pp. 183–190 (2006)

39. Jaschke, R., et al.: TRIAS: An algorithm for mining iceberg tri-lattices. In: Pro-
ceedings IEEE ICDM 2006, Hong Kong, China, pp. 907–911 (2006)

40. Ji, L., Tan, K.L., Tung, A.K.H.: Mining frequent closed cubes in 3D datasets. In:
Proceedings VLDB 2006, Seoul, Korea, pp. 811–822 (2006)

41. Godin, R., Valtchev, P.: Formal concept analysis-based class hierarchy design in
object-oriented software development. In: Ganter, B., Stumme, G., Wille, R. (eds.)
Formal Concept Analysis. LNCS (LNAI), vol. 3626, pp. 192–207. Springer, Heidel-
berg (2005)

42. Wille, R.: Conceptual structures of multicontexts. In: 4th Int. Conf. on Conceptual
Structures ICCS 1996, pp. 23–39. Springer, Heidelberg (1996)

43. Imielinski, T., Mannila, H.: A database perspective on knowledge discovery. Com-
munications of ACM 39, 58–64 (1996)

44. Liu, B., Hsu, W., Ma, Y.: Integrating classification and association rule mining.
In: Proceedings KDD 1998, pp. 80–86. AAAI Press, Menlo Park (1998)

45. Pensa, R.G., Robardet, C., Boulicaut, J.F.: Constraint-driven Co-Clustering of
0/1 Data. In: S.B., et al. (eds.) Constrained Clustering: Advances in Algorithms,
Theory and Applications. Data Mining and Knowledge Discovery Series, Chapman
& Hall/CRC Press (to appear, 2008)



Acquiring Generalized Domain-Range Restrictions�

Sebastian Rudolph

Institut AIFB, Universität Karlsruhe, Germany
��������	
����
��	���������

Abstract. Proposing a certain notion of logical completeness as a novel quality
criterion for ontologies, we identify and characterise a class of logical propo-
sitions which naturally extend domain and range restrictions commonly known
from diverse ontology modelling approaches. We argue for the intuitivity of this
kind of axioms and show that they fit equally well into formalisms based on rules
as well as ones based on description logics. Extending the attribute exploration
technique from formal concept analysis (FCA), we present an algorithm for the
eÆcient interactive specification of all axioms of this form valid in a domain of
interest. We compile some results that apply when role hierarchies and symmetric
roles come into play and demonstrate the presented method in a small example.

1 Introduction

Semantic technologies have gained significant interest in recent years as indicated by
prominent conferences and workshop as well as a plethora of research projects. On-
tologies constitute the central means within this area by providing logical descriptions
of a considered domain based on which knowledge about the domain can be deduced
automatically (this task usually being referred to as reasoning). Yet, the practical de-
ployment of semantic technologies in a wider range of applications clearly requires
new technical methods as well as methodologies assisting the knowledge engineer in
designing medium to large size ontologies containing formalized knowledge beyond
the usual subclass-superclass (i.e., taxonomic) relationships.

Though reasoning methods provide some assistance in this regard (e.g., allowing to
check for local and global consistency of the formalized knowledge as well as for an
ontology’s “capability” to logically entail wanted consequences), there are other qual-
ity criteria for ontologies that cannot be met by reasoning support alone. One of those
central criteria – well-nigh currently neglected in knowledge representation research –
is that of completeness. More precisely, a knowledge base KB can be said to be com-
plete w.r.t. a certain logic(al fragment), if every statement expressible in that logic can
be entailed from KB or declined by KB (e.g. by showing the validity of its negation).
Remarkably, Formal Concept Analysis has provided powerful tools to achieve the men-
tioned kind of completeness for some logical fragments already more then twenty years
ago and subsequently successfully applied in numerous domains.
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Clearly, completeness w.r.t. expressive formalisms (as, say, OWL1.1-completeness)
is a goal which cannot be reasonably fulfilled for non-trivial ontologies. Hence (in anal-
ogy to identifying tractable fragments of DLs that allow relatively expressive modelling
while still being of low reasoning complexity) we argue for identifying fragments being
satisfactorily expressive and intuitive to the user as well as still computationally easy to
handle, such that the completeness of a KB w.r.t. those fragments is both desirable and
achievable.

Hence in our paper, we characterise a group of axioms which meet those require-
ments and canonically generalise both domain and range statements. Furthermore we
provide a method for their interactive acquisition that in the end yields a knowledge
base being complete w.r.t. the class of these axioms. In Section 2, after some initial
motivation, we introduce and define this type of domain axioms expressible equiva-
lently by DL (resp. OWL) statements or by rules. Section 3 presents Role Exploration,
a method for – given a role (resp. binary predicate) and a set of “interesting” classes
(resp. unary predicates) – interactively acquiring all axioms of this type valid in the
described domain of interest.1 This method is based on the aforementioned attribute
exploration algorithm from formal concept analysis. Section 4 discusses how one could
take advantage of additional knowledge about roles, namely role hierarchies and role
symmetry, by modifications of the Role Exploration algorithm. In Section 5, we demon-
strate Role Exploration by further elaborating an example for the setting brought up in
Section 2. Finally, Section 6 concludes and gives an outlook to further research.

In the sequel, we assume the reader to be familiar basic notions from description
logics (see [1] for a comprehensive and detailed overview) and rule-based languages [2].

2 Generalised Domain-Range Restrictions: Characterisation and
Properties

Imagine the following situation: suppose, in a knowledge base describing persons and
personal relationships, we have a role denoted with married which is to express whether
a person is married to another person. So, clearly an ontology engineer would state
that both domain and range of that role would have to be subclasses of Person, being
expressed by the DL statements �married�� � Person and �married�Person or by the
rules married(X� Y) � Person(X) and married(X� Y) � Person(Y). In an OWL (Web
Ontology Language, W3C recommendation [3]) ontology this could be expressed using
the domain and range language constructs for object properties as follows:

��������	
����	�� ����������	���

����������� ���	���
	����	������

������� 	 ���	���
	����	������

���������	
����	���

Yet, what one would certainly like to additionally state is that males can marry only
females and vice versa.2 Obviously, this is not possible via the usual OWL domain and

1 In order not to confuse the two meanings of the term “domain”, we use domain of interest
whenever referring to the meaning “universe of discourse” or “set of all entities”.

2 For the sake of the example we refer to a situation without same-sex marriages. However, this
is not meant to reflect any personal attitude of the author towards this topic.
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range constructs. However, the DL axioms Male � �married�Female and Female �

�married�Male (as well as their OWL DL counterparts) or the rules married(X� Y) �
Male(X) � Female(Y) and married(X� Y) � Female(X) � Male(Y) express exactly
this relationship.

Staying with this kind of examples, note that there are countries (such as India),
where the minimal age to get (and hence, to be) married is sex-dependant.3 The cor-
responding regulation is no domain or range restriction in the classical sense either,
yet can be stated by DL axioms like Male � �married�� � Age21plus and Female �

�married�� � Age18plus or – in a rule language – by married(X� Y) � Male(X) �

Age21plus(X) and married(X� Y) � Female(Z) � Age18plus(Y).
Having demonstrated the utility and intuitivity of this kind of modelling axioms, we

introduce a type of statements capturing all of them while being still computationally
easy to handle.

Definition 1. Given a set � of named classes and a role R, a ����������	 	
����-�����
�������
� (short: GDRR) is a rule having the following form

R(X� Y) �
�
A�A

A(X) �
�
B�B

B(Y) �
�
C�C

C(X) �
�
D�D

D(Y)

where A�B�C�D 	 � and R is a role name. Note, that for C 
 D � �, the rule will
have an empty head (also denoted by �) and, hence, will be interpreted as integrity
constraint.

Put into words, the GDRR presented in the above definition would mean the following:
“For any two elements X and Y of the domain of interest that are connected by a role R
and where X fulfills (all of) A as well as Y fulfills (all of) B, we know that X additionally
fulfills C and Y additionally fulfills D.”

The next theorem guarantees that for every GDRR, there is a semantically equivalent
general concept inclusion axiom (GCI) in any suÆciently expressive DL (while these
expressiveness requirements are very low).

Theorem 1. The GDRR

R(X� Y) �
�
A�A

A(X) �
�
B�B

B(Y) �
�
C�C

C(X) �
�
D�D

D(Y)

is equivalent to both of the following GCIs:4

�

A�A

A � �R�
��

B�B

B
�
�
�

C�C

C � �R�

���
B�B

�B
�

��

D�D

D
��
�

�

B�B

B � �R��
��

A�A

A
�
�
�

D�D

D � �R��

���
A�A

�A
�

��

C�C

C
��
�

3 In the Indian Child Marriage Restraint Act of 1929, amended in 1978, child is defined as “[...]
a person, who, if a male, has not completed twenty-one years of age, and if a female, has not
completed eighteen years of age [...]” [4].

4 Where we set
�

E�E E to be � whenever E � �.
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Although the GCI obtained by the uniform translation provided by Theorem 1 might
look cumbersome and counterintuitive, note that obviously any GDRR having a con-
junction of atoms in the head can be split into several GDRRs with single-atom heads.
Each of those will be equivalent to a more intuitive GCI, as stated by the following
corollary.

Corollary 1. 1. The GDRR of the shape

R(X� Y) � A1(X)� � � � �An(X)�B1(Y)� � � � �Bk(Y) � �

is equivalent to each of the GCIs

A1 � � � � � An � �R�(B1 � � � � � Bk) � �

B1 � � � � � Bk � �R��(A1 � � � � � An) � �

2. The GDRR of the shape

R(X� Y) � A1(X)� � � � �An(X)�B1(Y)� � � � �Bk(Y) � C(X)

is equivalent to each of the GCIs

A1 � � � � � An � �R�(B1 � � � � � Bk) � C
B1 � � � � � Bk � �R��(�A1  � � �  �An  C)

B1 � � � � � Bk � �R��(A1 � � � � � An � �C) � �

3. The GDRR of the shape

R(X� Y) � A1(X)� � � � �An(X)�B1(Y)� � � � �Bk(Y) � C(Y)

is equivalent to each of the GCIs

A1 � � � � � An � �R�(�B1  � � �  �Bk  C)
A1 � � � � � An � �R�(B1 � � � � � Bk � �C) � �

B1 � � � � � Bk � �R��(A1 � � � � � An) � C

Note that therefore, each of the description logics ��� and ��� is suÆcient to express
GDRRs; for the first two types, even �� will do.

Considering the rule representation, note that we refrain from using negated atoms.
Hence the proposed type of rules belongs to the fragment of Horn clauses. Follow-
ing the general framework for defining Horn DLs from [5], the DL representation of
GDRRs belongs to Horn-��� (whereas ��� is already Horn anyway). Likewise, they
also naturally fall in the DLP [6] fragment. Mark that, although no negated atoms are
allowed, we can nevertheless express certain kinds of negative statements by using rules
with empty heads (also called integrity constraints, as mentioned in Definition 1). For
example, the statement “a child is not allowed to marry”, normally modelled with a
DL axiom like Child � ��married��� can equivalently be expressed by the GDRR
married(X� Y)�Child(X) � ��
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Hence, GDRRs identify a class of logical statements useful to characterise roles be-
yond the common domain-range restrictions still being both intuitive and computation-
ally friendly (witnessed by their containment in the abovementioned fragments). Re-
lated to that, they also fulfill a certain computationally advantageous locality condition:
given the set � of all entities of a domain of interest, checking whether a certain GDRR
is satisfied therein can be done by separately checking all entity pairs connected by the
role R. Mark that this is not the case for any “simple looking” GCI, take for example
�has�Sorrow � �has�Liqueur – a proposition well-known from German poetry.5

3 Acquisition of GDRRs Via Role Exploration

In this section, we will propose a way to exhaustively determine all GDRRs of a certain
shape (i.e., referring to a role R and a set of relevant atomic classes �) valid in a domain
of interest, i.e., assuring “GDRR-completeness” of the resulting knowledge in the sense
introduced in Section 1. This method is based on the attribute exploration algorithm well
known from formal concept analysis. The algorithm we present will consequently ask
an expert for the validity of GDRRs in the domain of interest and end up with a revised
knowledge base and a complete (as defined later) set of GDRRs.

The attribute exploration algorithm our work is based on was introduced in [8]. At-
tribute exploration with partial or incomplete information has been dealt with in several
variants e.g. in [9,10]. In [11], FCA and DL were combined for the first time by us-
ing complex concept descriptions to define new attributes in formal contexts. In [12],
attribute exploration was used to determine the concept hierarchy of conjunctions on
atomic concepts. The idea to use attribute exploration as a way to interactively refine an
ontological knowledge base was brought up in [13] and thoroughly described in [14],
where also an extension to the case with partial information was proposed. A concise
algorithm for exploration with partly known objects has been provided in [15].

3.1 FCA and Attribute Exploration with Partial Information

We refrain from introducing the most basic FCA notions and instead refer the reader to
[16].

For our considerations, we work with a generalised notion of this data structure,
allowing for partial specification (i.e., it might be unknown, whether an object has an
attribute or not). This is an important extension for a knowledge representation setting,
since (due to the open world assumption), it is reasonable to assume that not all (even
not all relevant) facts about a described entity are known.

Definition 2. A ������ �
���� �
��� �? is a quadruple (G� M� I�� I�) where both
(G� M� I�) and (G� M� I�) are formal contexts and I� 	 I�.

A formal context � � (G� M� I) will be called �
�����
� of �?, if I� 	 I 	 I�.

The intuitive meaning of this definition is the following: gI�m means, it is certain that
object g has the attribute m, while gI�m means, it is possible that object g has the

5 “Es ist ein Brauch von alters her: wer Sorgen hat, hat auch Likör!” (emphasis by the author)
to be found in Chapter 16 of [7].
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attribute m or – in other words – it is not certain that object g does not have the attribute
m. An intuitive visualization would be a table with rows corresponding to the objects
and columns corresponding to the attributes, having crosses where gI�m, blanks where
not gI�m and question marks everywhere else.

Naturally, a completion of a partial formal context will be obtained by substituting
each question mark by either a cross or a blank.

In FCA, implications constitute the central means of expressing knowledge. We for-
mally specify this rather straightforward notion together with some further useful theory
in the following definition.

Definition 3. Let M be an arbitrary set. An ��������
� on M is a pair (A� B) with
A� B 	 M. To support intuition, we write A�B instead of (A� B).

A� B �
�	� in a formal context � � (G� M� I), if for all g � G, we have that A 	 gI

implies B 	 gI. We then write � �� A�B.
We say, a partial formal context � � (G� M� I�� I�) �	��� an implication A � B,

if for all g � G we have that A 	 gI� implies B 	 gI� . For C 	 M and a set � of
implications on M, let C� denote the smallest set with C 	 C� that additionally fulfills

A 	 CI implies B 	 CI

for every implication A � B in �.6 If C � C�, we call C �-��
��	. We say � ������

A � B if B 	 A�.7 An implication set � will be called �
�-��	��	��, if for any
(A�B) � � we have that B � A���A�B�. A set � implications holding in a context� will
be called �
�����, if every implication A � B holding in � is entailed by �. � will be
called an ��������
� ���� of a formal context � if it is non-redundant and complete.

Note that implication entailment is decidable in linear time w.r.t. the size of � [17,18].
Therefore, knowing the implication base in a logical setting allows fast handling of the
whole corresponding implicational theory. Moreover, for every formal context, there
exists a canonical implication base [19].

The method of attribute exploration allows to acquire the implication base of a do-
main of interest being just implicitly known by an expert in an interview-like process.
Due to space reasons, we omit to display its technical details and refer the reader to the
thorough presentation in [15].

Essentially, the following happens: the aspect of the domain of interest that shall
be explored is formalized as a formal context � � (U� M� I). Usually, it is not known
completely in advance. However, possibly, some entities of the domain of interest g � U
are already known, as well as some attributes that g has or has not, constituting an initial
partial formal context.

During runtime, the algorithm presents questions of the form

“Does the implication A�B hold in the context � � (U� M� I)?”

to the human expert. The expert might confirm this. In this case, A � B is archived as
part of �’s implicational base ��. The other case would be that A � B does not hold

6 Note, that this is well-defined, since the mentioned properties are closed wrt. intersection.
7 Actually, this is a syntactic shortcut. Yet, it can be easily seen that this coincides with the usual

entailment notion.
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in (U� M� I). But then, there must exist a g � U with A � gI and B � gI . The expert
is asked to input this g and – roughly speaking – enough evidence for qualifying g as
a counterexample by augmenting the partial context such that A 	 gI� and B � gI� .
The procedure terminates when the implicational knowledge of the � is completely
acquired, i.e., the implications admitted by the partial formal context built from the
entered counterexamples are the same as those entailed by ��.

In our approach, we will exploit the capability of attribute exploration to eÆciently
determine a propositional implicational theory. Notwithstanding, we extend the under-
lying language8 from purely propositional to GDRRs.

3.2 Role Contexts

In this work, we employ attribute exploration in a way that is structurally very similar
to the approach in [21], where this technique was used for specifying dynamic systems.
In this setting, roles would be interpreted as actions that can be taken, classes are used
to describe states and the models of a corresponding theory can be interpreted as state
transition systems. Yet this technique easily carries over to the more general setting of
knowledge specification as firstly sketched by the author in [14].

Definition 4. Let �� be a DL knowledge base and, as usual, an interpretation � of
�� be defined as (�� ��), where � is the individual set and �� a function mapping class
names to subsets of � and role names to subsets of � � �.

For a given interpretation � together with a set � of named classes and a role R, the
�
�� �
��� �R is defined as formal context (G� M� I) with

– G :� R�
� �(Æ1� Æ2) � Æ1� Æ2 � �� (Æ1� Æ2) � R��

the objects of �R are those individual pairs connected by the role R,
– M :� �Cd�Cr � C � ��

the attribute set of �R contains two “copies” of �: the 	
���� ������ indexed
with d the ����� ������� indexed with r, and

– I 	 G � M with (Æ1� Æ2)ICd �� Æ1 � C� and (Æ1� Æ2)ICr �� Æ2 � C�.
the domain attributes indicate for an R-connected pair of entities, whether the cor-
responding class contains the first entity of that pair, while the range attributes
describe the second entity.

The following theorem shows how the validity of a GDRR in an interpretation can be
read from a corresponding role context.

Theorem 2. An interpretation � satisfies a GDRR

R(X� Y) �
�
A�A

A(X) �
�
B�B

B(Y) �
�
C�C

C(X) �
�
D�D

D(Y)

if and only if the corresponding role context �R satisfies the implication

�Ad � A � A� 
 �Br � B � B��� if C 
 D � � and

�Ad � A � A� 
 �Br � B � B�� �Cd � C � C� 
 �Dr � D � D� otherwise.
8 There exist already other language extensions, e.g. to Horn-logic with a bounded variable set,

see [20].



Acquiring Generalized Domain-Range Restrictions 39

This theorem enables us to “translate” any implication in a role context into an equiv-
alent GDRR and via Theorem 1 further into a GCI. So, for a given implication � from
�R, let DL�(�) denote an equivalent GCI with the pure role and DL�(�) an equivalent
GCI with the inverse role.

Now, the basic idea for the knowledge acquisition method we are going to pro-
pose is to carry out attribute exploration (with uncertain knowledge) on the context
�R. Thereby, our basic assumption is that there exists a distinguished interpretation ��

entirely (but implicitly) known by the human expert that we want to specify in terms of
GDRRs.

3.3 Reasoner-Aided Exploration

The general work flow of exploration based knowledge base refinement was first de-
scribed by the author in [13] and has been subsequently applied in diverse approaches
[22,14,15,23]. Basically, three entities are involved:

– the exploration algorithm consecutively asking questions,
– a reasoner trying to cope with those questions based on (terminological or grounded)

information being present a priori (thereby minimising the expert’s “workload”), and
– an (ideally omniscient) human expert dealing with those questions that cannot be

answered by the reasoner.

For the sake of clarity, we will describe a rather concrete instantiation of this frame-
work. Nevertheless, there are several degrees of freedom in certain parts of the algo-
rithm in that certain additional computation steps could be carried out, which do not
alter the outcome of the algorithm but might have significant influence on its perfor-
mance. We indicate such optional steps in the algorithm leaving questions related to
optimisation for future research.

So let �� be an OWL DL knowledge base and � be an OWL DL reasoner. Let
furthermore � be a set of named classes and R a role9 occurring in ��.

Initialisation. We initialise a partial “working” context �?
R � (G� M� I�� I�) by setting

G :� �, M :� �Cd�Cr � C � ��. It will be successively enriched during the exploration.

Scan for a-priori Data (optional). Although any exploration process can be carried
out starting from scratch, i.e. without any objects known in advance, such information
may be advantageous by making possible hypotheses obsolete. Besides the possibility
of manually providing such information, there are two possible ways of extracting this
kind of information from a given knowledge base, which we call the lazy and the greedy
way, depending on whether reasoning is employed or not.

So, the lazy way of data search would, for all role statements R(a� b) � ��, add
(a� b) to the object set G of �?

R and set

I� :� I� 

��

(a� b)�Cd
	
� C(a) � ���C � �





��

(a� b)�Cr
	
� C(b) � ���C � �



and

I� :� I� 

��

(a� b)�Cd
	
� �C(a) � ���C � �





��

(a� b)�Cr
	
� �C(b) � ���C � �



�

9 The corresponding OWL DL term being object property.
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Clearly, this would just add the relevant information explicitly present in �� to the
working context.

Contrarily, the greedy way would employ reasoning to acquire more complete infor-
mation to start with. In this case, for any role statement R(a� b) that can be inferred from
�� by �, the pair (a� b) would be added to G. Employing � further, we then set

I� :� I� 

��

(a� b)�Cd
	
� �� �� C(a)�C � �





��

(a� b)�Cr
	
� �� �� C(b)�C � �



and

I� :� I� 

��

(a� b)�Cd
	
� �� ��� �C(a)�C � �





��

(a� b)�Cr
	
� �� ��� �C(b)�C � �



�

Although the greedy way would deliver more starting information which might
shorten the subsequent exploration process, this advantage might be vitiated by the
large number of possibly time consuming reasoner calls.

Scan for a-priori GDRRs (optional). The exploration algorithms also allows for en-
tering already known implications before starting the actual exploration process. Like
in the case with a-priori data, this could accelerate the exploration process, since some
hypotheses can be taken for granted.

In order to acquire this kind of information, we check for every GCI occurring in
��, whether it syntactically entails10 a GDRR (w.r.t. R and �) and if so, add the re-
spective implication � to the set of implications known in advance. Note that also GCIs
that represent just class hierarchies are interesting in this regard, since e.g. C � D would
entail any GDRR R(X� Y)�C(X) � D(X) as well as R(X� Y)�C(Y) � D(Y).

Exploration. Now we start the exploration process on the partial working context. Ev-
ery hypothetical implication � the algorithm comes up with is transformed into a sub-
sumption statement DL�(�). The following two steps can be carried out in arbitrary order
(or in parallel), whereas it is impossible that both succeed (which allows to refrain from
either one if the other is known to have succeeded).

– Employ � to check whether �� �� DL�(�). If so, silently confirm � to the explo-
ration algorithm and continue the exploration.

– Employ � to check whether �� 
 �DL�(�)� is unsatisfiable. If this is the case, this
means that �� forces any model to contain a pair of individuals (i1� i2) serving as
a counterexample for �.

If none of the above cases applies, the human expert has to decide whether the proposed
GDRR is valid in the described domain of interest, i.e., whether �� �� DL�(�). If the
expert agrees, � will be confirmed to the exploration algorithm and additionally – since
the expert has revealed genuinely new information – DL�(�) will be added to ��. After
that, the exploration continues with a new hypothesis.

In case the GDRR is denied (either by � or by the expert), a counterexample must
be provided. If � was able to show the unsatisfiability of �� 
 �C � D�, it might even
be able to automatically provide a counterexample in the following way. Let A � B be
the implication in question, and set �� :� �DL�(A� �b�) � b � B� and �� :� �DL�(A�

�b�) � b � B�. Now, for every GCI C � D contained in �� 
 ��, we use � to retrieve

10 Hereby we mean entailment that can be detected by easy (i.e. tractable) syntactic transforma-
tions. Due to lack of space, we postpone an elaboration of this part to future work.
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instances of C � �D. If one such instance, is found, we add a new pair (e1� e2) to G and
set I� :� I� 
 �(e1� e2)� � A as well as I� :� I� 
 �(e1� e2)� � (M  �b���). In this case,
the exploration process can be continued without consulting the expert.

However, even if the unsatisfiability of �� 
 �C � D� can be shown, there might be
no named individual in the �� witnessing this in the sense just described. Then – as
well as in the case when the expert had to deny the hypothetical GDRR himself – he has
to manually add information to the knowledge base in a way that a counterexample can
be retrieved by the method described above. Obviously, this can be achieved in any case
by entering an R-connected individual pair i1 and i2 with appropriate class assertions,
but there are other ways (as adding instances for one concept description from �� or
��). Then a (partial) counterexample description can be generated automatically in the
above described way.

Termination. After the exploration finishes, we have obtained a twofold result:

– A refined version of �� which is “GDRR-complete” w.r.t � and R meaning the
following: Every GDRR involving the role R and concepts from � is either en-
tailed by �� or adding it to �� leads to unsatisfiability. Hence, �� completely
characterises �� in terms of this class of GDRRs.

– An implication base ��, accumulated by the exploration process. �� allows to
check in linear time for every GDRR on R and � whether it is valid in �� or not.

4 Interplay with Other Role Properties

Considering OWL DL, there are lots of other features which can be used to characterise
roles. In the sequel we will briefly review how some of this information can be taken
advantage of during the role exploration process.

Symmetric Roles. Quite frequently, roles are known to be symmetric. This might be
expressed by the DL statement R ! R� or the rule R(X� Y) � R(Y� X); OWL even
provides a dedicated language construct for this. In this case, the symmetry carries over
to�R in the following sense: for every implication A�B holding in�R, the implication
�(A)��(B) with

� :

��������
Cd "� Cr

Cr "� Cd

�
for all C � �

� "� �

holds in �R as well. In [24], attribute exploration has been extended in order to take this
kind of symmetries into account, allowing the acquisition of implicational knowledge
“modulo permutations” on the attribute set.

Role Hierarchies. A standard feature in expressive description logics (and as well con-
tained in OWL DL) is the definition of role hierarchies. For two given roles R1�R2, the
role R1 is subsumed by the role R2, (DL notation: R1 � R2) if R�

1 	 R�
2 . It takes just

little consideration that in this case, every implication valid in �R2 is also valid in �R1 .
This can be exploited for the exploration in the following way: Assume for both R1

and R2, all valid GDRRs w.r.t. � have to be determined. The most eÆcient way to do



42 S. Rudolph

Person � Male � Female Person � Child � Adult Catholic � Priest � Male
Male � Female � � Child � Adult � � Catholic � Protestant � �
married � married� �married�� � Person � � 	married�Person

Fig. 1. Example knowledge base 
� about marriages

so would then be to first carry out the procedure for R2 and use the acquired implica-
tion base as a-priori knowledge for the next procedure, thereby reducing the amount of
hypothetical GDRRs brought up by the algorithm.

5 An Example: So, Who Marries Whom?

For a small demonstration how the presented technique would be applied in practice, let
us stay with the example from Section 2. Let �� be the knowledge base given in Fig. 1.
Now imagine, this knowledge base is to be refined with respect to the role married. Let

� :� �Person�Male�Female�Child�Adult�Catholic�Protestant�Priest�

be the set of interesting class names. So the set of attributes of the role context would be

M :� � Persond�Personr�Maled�Maler�Femaled�Femaler�Childd�Childr�Adultd�
Adultr�Catholicd�Catholicr�Protestantd�Protestantr�Priestd�Priestr���

Note that the role married is defined to be symmetric; therefore, the respective addi-
tional considerations from the previous section apply. Assume the following married
couples already to be known: Andreas & Christiane, Anupriya & Kedar, as well as
Astrid & Thomas. So, after initialisation, the starting context would have a shape as
depicted in Fig. 2.

In the sequel, we review the hypothetical implications the exploration algorithm
comes up with and explain how they are handled by the reasoner and (resp. or) the
human expert.

1. Question: � � �Persond�Adultd�Personr�Adultr� (In words – mark that the empty
premise requires the conclusion to be universally true): “If two entities marry, are
they both persons and adults?”)
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Andreas & Christiane � � � � � � � �

Anupriya & Kedar � � � � � �

Astrid & Thomas � � � � � � � � �

Fig. 2. Starting context for the GDRR-exploration of the role married
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Passing the corresponding GCI (which would be �married�� � Person � Adult �
�married�(Person � Adult)) to the OWL DL reasoner does not yield an answer,
since it cannot be derived from the given knowledge base. Hence, the human ex-
pert has to be asked and would confirm this implication – since we assume a legal
system where child marriages are prohibited. So the GCI is added to �� as a new
axiom.

2. Question: �Maled� � �Femaler� (In words: “If a male is married, is he necessarily
married to a female?”)
This axiom which we already encountered in Section 2 is obviously true but cannot
be derived from ��. Therefore, it is passed to the human expert, who again would
confirm it which leads to another update of ��

3. Question: �Femaled� � �Maler� (In words: “If a female is married, is she necessar-
ily married to a male?”)
Mark that this axiom is not redundant, since all information specified so far does
not exclude the possibility of female-female marriages. Again, the human expert
would be asked, confirm the validity and update �� anew.

4. Question: �Femaled�Maled� � ��� (In words: “Is it impossible that somebody
married is male and female at the same time?”)
Obviously, the validity of this statement follows from the axiom Male�Female � �

contained in the original knowledge base and is therefore silently answered by the
reasoner without bothering the expert.

5. Question: �Childd� � ��� (In words: “Is it impossible for a child to be married?”)
It takes little consideration that this axiom can be derived from the updated knowl-
edge base containing Child � Adult � � as well as the axiom that was added to the
�� as a result of the first question. Thus it is tacitly confirmed by the reasoner as
well.

6. Question: �Catholicd� � ��� (In words: “Is it impossible that a Catholic marries?”)
In fact, since none of the marrying individuals entered so far is Catholic, this is a
reasonable hypothesis. Of course it cannot be proved from the current KB, but it
cannot be rejected either. Again the expert would have to decide on this. This time,
he would decline the hypothesis and enter information witnessing this – possibly a
married couple of whom at least one is a Catholic.

In this fashion, the exploration proceeds until it terminates. Only one of the hypothe-
ses presented in the sequel has to be confirmed by the human expert (and consequently
added to the knowledge base), namely �Catholicd�Priestd� � ��� – an axiom, the va-
lidity of which might become subject to change in the centuries to come.

6 Conclusion and Future Work

We have motivated and identified a class of OWL axioms that generalise the well-
known domain and range restrictions in an intuitive way and can be expressed both in
DL-based as well as rule-based formalisms. Moreover, we have proposed an interactive
method for refining a knowledge base with respect to a given role (binary predicate)
by acquiring all GDRRs valid in a certain domain of interest. As indicated by the given
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example, we are sure that the proposed technique will be of great help to domain experts
and ontology engineers in specifying their domain since it ensures both consistency of
the result and completeness in the above described sense.

There are several directions into which we will proceed with our work. An interest-
ing question directly related to the logical fragment of GDRRs is to what extent role
involving OWL axioms present in current ontologies can be expressed in the rather re-
stricted form of GDRRs. This would yield an empirical justification for our claim that
the identified fragment is of practical interest.

As to the theoretical foundations, an integration of the presented exploration tech-
nique with Relational Exploration [14] seems to be promising. Together with the obser-
vation, that in recent years, there have been several similar approaches yet di�ering in
the explored logical fragments as well as the additionally used exploration features, the
quest for a unifying general theoretical framework would be beneficial since it could
both grant theoretical insights as well as spawn versatile joint work towards an inte-
grated implementation which will proof very useful in the context of knowledge speci-
fication for the semantic web.

From the perspective of algorithm implementation and optimization, one question
longing for empirical clarification is that for the optimal choice of the optional parts
of the algorithm, especially, whether “greedy” or “lazy” scan for a-priori information
should be applied (this amounts to the question: reasoning whenever possible vs. rea-
soning only if necessary). Of course, the optimal choice depends on the performance
of the reasoner employed w.r.t. the several mentioned reasoning tasks. Since di�erent
reasoners might perform di�erently well in subsumption checking opposed to instance
retrieval, it might even be advisable to use several di�erent reasoners.

Finally, the method presented here fits perfectly into recently started work towards a
synergetic integration of exploration techniques with complementary approaches from
lexical ontology learning aiming at systems that can be beneficially applied in practical
situations, as sketched in [23].

In the end, we are very confident, that “completeness-eligible” fragments of common
knowledge representation languages in combination with exploration-based techniques
will help to establish unprecedented quality standards for ontologies.
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Abstract. Formal Concept Analysis (FCA) can be used to analyze data
given in the form of a formal context. In particular, FCA provides efficient
algorithms for computing a minimal basis of the implications holding in
the context. In this paper, we extend classical FCA by considering data
that are represented by relational structures rather than formal contexts,
and by replacing atomic attributes by complex formulae defined in some
logic. After generalizing some of the FCA theory to this more general
form of contexts, we instantiate the general framework with attributes
defined in the Description Logic (DL) EL, and with relational structures
over a signature of unary and binary predicates, i.e., models for EL. In
this setting, an implication corresponds to a so-called general concept
inclusion axiom (GCI) in EL. The main technical result of this paper
is that, in EL, for any finite model there is a finite set of implications
(GCIs) holding in this model from which all implications (GCIs) holding
in the model follow.

1 Introduction

Classical Formal Concept Analysis [12] assumes that data from an application
are given by a formal context, i.e., by a set of objects G, a set of attributes M , and
an incidence relation I that states whether or not an object satisfies a certain
attribute. To analyze the data given by such a context, FCA provides tools
for computing a minimal basis for the implications between sets of attributes
holding in the context [11,8]. An implication A → B between sets of attributes
A, B holds in a given context if all objects satisfying every attribute in A also
satisfy every attribute in B. A classical result by Duquenne and Guigues [13]
says that such a unique minimal basis always exists. If the set of attributes is
finite, which is usually assumed, this basis is trivially finite as well.

From a model-theoretic or (first-order predicate) logical point of view, a formal
context is a very simple relational structure where all predicates (the attributes)
are unary. In many applications, however, data are given by more complex rela-
tional structures where objects can be linked by relations of arities greater than
1. In order to take these more complex relationships between objects into account
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when analyzing the data, we consider concepts defined in a certain logic rather
than simply sets of atomic attributes (i.e., conjunctions of unary predicates).
Intuitively, a concept is a formula with one free variable, and thus determines a
subset of the domain (the extension of the concept) for any model of the logic
used to construct these formulae. We show that, under certain conditions on
this logic, many of the basic results from FCA can be extended to this more
general framework. Basically, this requirement is that a finite set of objects (i.e.,
elements of the domain of a given model) always has a most specific concept
describing these objects. The operator that goes from a finite set of objects to
its most specific concept corresponds to the prime operator in classical FCA,
which goes from a set of objects A to the set of attributes A′ that all objects
from the set have in common. The classical prime operator in the other direction,
which goes from a set of attributes B to the set of objects B′ satisfying all these
attributes, has as its corresponding operator the one that goes from a concept
to its extension.

We instantiate this general framework with concepts defined in the Descrip-
tion Logic EL [2,3], i.e., formal contexts are replaced by finite models of this
DL and attributes are EL-concepts. Though being quite inexpressive, EL has
turned out to be very useful for representing biomedical ontologies such as
SNOMED [22] and the Gene Ontology [23]. A major advantage of using an
inexpressive DL like EL is that it allows for efficient reasoning procedures [3,5].
Actually, it turns out that EL itself does not satisfy the requirements on the
logic needed to transfer results from FCA since objects need not have a most
specific concept. However, if we extend EL to ELgfp by allowing for cyclic con-
cept definitions interpreted with greatest fixpoint semantics, then the resulting
logic satisfies all the necessary requirements. Implications in this setting corre-
spond to so-called general concept inclusion axioms (GCIs), which are available
in modern ontology languages such as OWL [14] and are supported by most DL
systems [15].

The main technical result of this paper is that, in EL and in ELgfp, the set of
GCIs holding in a finite model always has a finite basis, i.e., although there are in
general infinitely many such GCIs, we can always find a finite subset from which
the rest follows. We construct such a finite basis first for ELgfp, and then show
how this basis can be modified to yield one for EL. Due to the space limitation,
we cannot give complete proofs of these results. They can be found in [4].

Related work. There have been previous approaches for dealing with more
complex contexts involving relations between objects. So-called power context
families [24] allow for the representation of relational structures by using a sepa-
rate (classical) context for each arity, where the objects of the context for arity n
are n-tuples. As such, power context families are just an FCA-style way of repre-
senting relational structures. In order to make use of the more complex relational
structure given by power context families, Prediger [16,18,17] and Priss [19] al-
low the knowledge engineer to define new attributes, and provide means for
handling the dependencies between the newly defined attributes and existing at-
tributes by means of formal concept analysis. However, rather than considering
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all complex attributes definable by the logical language, as our approach does,
they restrict the attention to finitely many attributes explicitly defined by the
knowledge engineer.

Similar to our general framework, Ferré [6,7] considers complex attributes
definable by some logical language. The equivalent of a formal context, called
logical context in [6,7], associates a formula (i.e., a complex attribute) with
each object. Since the authors assume that formulae form a join-semilattice, the
formula associated with a set of objects is obtained as the join of the formulae
associated with the elements of the set. Our general framework can be seen as an
instance of the one defined in [6,7], where the association of formulae to (sets of)
objects is defined using the semantics of the logic in question. However, Ferré’s
work does not consider implications, which is the main focus of the present paper
(see [4] for a more detailed comparison of our approach with the one in [6,7]).
An approach similar to the one of [6,7] was developed in [10] motivated by an
application in biochemistry.

The work whose objectives are closest to ours is the one by Rudolph [20,21],
who considers attributes defined in the DL FLE , which is more expressive than
EL. However, instead of using one generalized context with infinitely many com-
plex attributes, he considers an infinite family of contexts, each with finitely
many attributes, obtained by restricting the so-called role depth of the concepts.
He then applies attribute exploration [9] to the classical contexts obtained this
way, in each step increasing the role depths until a certain termination condition
applies. Rudolph shows that, for a finite model, this condition will always be
satisfied eventually, and that the implication bases of the contexts considered up
to that step contain enough information to decide, for any GCI between FLE-
concepts, whether this GCI holds in the given model or not. However, these
implication bases do not appear to yield a basis for all the GCIs holding in the
given finite model, though it might be possible to modify Rudolph’s approach
such that it produces a basis in our sense. The main problem with this approach
is, however, that the number of attributes grows very fast when the role depth
grows (this number increases at least by one exponential in each step).

2 The General Framework

In classical FCA, a formal context (G, M, I) consists of a set of objects G, a set of
attributes M , and an incidence relation I ⊆ G×M . Such a formal context induces
two operators (both usually denoted by ·′), one mapping each set of objects A
to the set of attributes A′ these objects have in common, and the other mapping
each set of attributes B to the set of objects satisfying these attributes. A formal
concept is a pair (A, B) such that G ⊇ A = B′ and M ⊇ B = A′. The set A is the
extensional description of the concept whereas B is its intensional description.
The two ·′ operators form a Galois connection, and if applied twice yield closure
operators ·′′ on the set of objects and the set of attributes, respectively.

In our general framework, we assume that intensional descriptions of sets of
objects are given by concept descriptions. A concept description language is a
pair (L, I), where L is a set, whose elements are called concept descriptions, and
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I is a set of tuples i = (Δi, ·i), called models, consisting of a non-empty set Δi

(of objects) and a mapping ·i : L → P(Δi) : f �→ f i that assigns an extension
f i ⊆ Δi to each concept description f ∈ L.

Intuitively, models correspond to formal contexts, and the operator ·i corre-
sponds to the ·′ operator that assigns an extension B′ to each set of attributes
B. In order to define an analogon to the ·′ operator in the other direction, we in-
troduce the subsumption preorder on concept descriptions: f1 ∈ L is subsumed
by f2 ∈ L (written f1 � f2) if f i

1 ⊆ f i
2 for all models i ∈ I. If f1 � f2 and

f2 � f1, then we say that f1 and f2 are equivalent (f1 ≡ f2).
Given a set of objects A in a formal context, its intensional description A′ is

the largest set of attributes B such that A ⊆ B′. Since B′
1 ⊆ B′

2 if B1 ⊇ B2,
such a largest set should correspond to the least one w.r.t. subsumption. This
motivates the following definition.

Definition 1 (Most specific concept). Let (L, I) be a concept description
language, i ∈ I be a model, and X ⊆ Δi. Then f ∈ L is a most specific concept
for X in i if

X ⊆ f i, (1)

and f is a least concept description with this property, i.e., for all g ∈ L with
X ⊆ gi we have f � g.

The most specific concept of a set X ⊆ Δi need not exist, but if it exists then
it is unique up to equivalence. In case X has a most specific concept in i, we
denote it (or, more precisely, an arbitrary element of its equivalence class) by
X i. The concept description X i is called the intensional description of the set of
objects X . An example of a concept description language for which X i always
exists is ELgfp, which will be introduced in Section 3 below.

The following lemma shows that the mappings

·i : P(Δi) → L and ·i : L → P(Δi)

do indeed form a Galois-connection with properties similar to the ·′ operators in
classical FCA. Because of these similarities to FCA we will sometimes use the
term description context for a model i ∈ I.

Lemma 2. Let (L, I) be a concept description language such that X i exists for
every i ∈ I and every X ⊆ Δi. Let i ∈ I be a model, X, X1, X2 ⊆ Δi sets of
objects, and f, f1, f2 ∈ L concept descriptions. Then the following holds:

(a) X1 ⊆ X2 ⇒ X i
1 � X i

2,
(b) f1 � f2 ⇒ f i

1 ⊆ f i
2,

(c) X ⊆ X ii,
(d) f ii � f ,

(e) X i ≡ X iii,

(f) f i = f iii,

(g) X ⊆ f i ⇔ X i � f .

Proofs of these facts can be obtained by adapting the proofs from classical FCA.
They can be found in [4], but also in [6,7] since the framework introduced above
can be seen as an instance of the framework defined in [6,7].
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In the remainder of this section, we assume that (L, I) is an arbitrary, but
fixed, concept description language. All definitions given below are implicitly
parameterized with this language. Our goal is to characterize the subsumption
relations that are valid in a given description context of this language by de-
termining a minimal basis of implications comparable to the Duquenne-Guigues
basis in classical FCA. We start by defining the notion of an implication and
by showing some general results that hold for arbitrary concept description lan-
guages. Later on, we will look at the concept description language ELgfp in more
detail.

Definition 3 (Implication). An implication is a pair (f1, f2) of concept de-
scriptions (f1, f2) ∈ L×L, which we will usually denote as f1 → f2. We say that
the implication f1 → f2 holds in the description context ι = (Δι, ι) if f ι

1 ⊆ f ι
2.

Obviously, we have f1 � f2 iff f1 → f2 holds in every description context ι ∈ I.
However, as said above, we are now interested in the implications that hold in a
fixed description context rather than in all of them.

In order to define the notion of a basis of the implications holding in a de-
scription context, we must first define a consequence operator on implications.
Let B ⊆ L × L be a set of implications and f1 → f2 an implication. If f1 → f2

holds in all description contexts i ∈ I in which all implications from B hold,
then we say that f1 → f2 follows from B. It is not hard to see that the relation
follows is

– reflexive, i. e. every implication f1 → f2 ∈ B follows from B, and
– transitive, i. e. if f1 → f2 follows from B2, and every implication in B2 follows

from B1, then f1 → f2 follows from B1.

Definition 4 (Basis). For a given description context ι we say that B ⊆ L×L
is a basis for the implications holding in ι if B is

– sound for ι, i.e., it contains only implications holding in ι;
– complete for ι, i.e., any implication that holds in ι follows from B; and
– minimal for ι, i.e., no strict subset of B is complete for ι.

Since the above definitions use only the ·ι operator that assigns an extension
to every concept description, but not the one in the other direction, they also
make sense for concept description languages where the most specific concept of
a set of objects need not always exist. An example of such a language is EL, i.e.,
the sublanguage of ELgfp that does not allow for cyclic concept definitions (see
Section 3 below).

The description language (L′, I ′) is a sublanguage of the description language
(L, I) if L′ ⊆ L and I ′ =

{
i|L′

∣
∣ i ∈ I}

, where i|L′ is the restriction of i to L′,
i.e., Δi = Δi|L′ and ·i|L′ is the restriction of the mapping ·i to L′.

Proposition 5. Assume that (L′, I ′) is a sublanguage of (L, I), that f1 → f2 ∈
L′ ×L′, and that B ⊆ L′ ×L′. Then f1 → f2 follows from B in (L, I) iff f1 → f2

follows from B in (L′, I ′).
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This proposition will be used later on to transfer results from ELgfp to EL.
In the remainder of this section, we will characterize complete subsets of the

set of all implications holding in a given description context ι. Whenever we use
the ·ι operator from sets of objects to concept descriptions, we implicitly assume
that it is defined.

Analogously to the situation in classical FCA, we can restrict the attention
to implications whose right-hand sides are closed under the operator ·ιι.
Lemma 6. If the implication f1 → f2 holds in ι, then it follows from {f1 →
f ιι
1 }, and the set {f1 → f ιι

1 } is sound for ι.

Proof. By Lemma 2(f), all implications of the form f → f ιι hold in ι, which
yields soundness of {f1 → f ιι

1 }.
Let f1 → f2 be any implication that holds in ι, i.e., f ι

1 ⊆ f ι
2. By Lemma 2(g),

this is equivalent to
f ιι
1 � f2. (2)

Let i be some model in which f1 → f ιι
1 holds. By definition this means that

f i
1 ⊆ (f ιι

1 )i. Using Lemma 2(g) again we obtain f ii
1 � f ιι

1 . Together with (2) and
transitivity of �, this yields f ii

1 � f2, and hence f i
1 ⊆ f i

2. Thus, we have shown
that f1 → f2 holds in any model i in which f1 → f ιι

1 holds. ��
Corollary 7. The set of implications {f → f ιι | f ∈ L} is complete for ι.

Having reduced the number of right-hand sides that need to be considered, our
goal is now to restrict the left-hand sides. This is possible if we can find a so-
called dominating set of concept descriptions.

Definition 8 (Dominating set). The set D ⊆ L dominates the description
context ι if, for every f ∈ L, there is some g ∈ D such that f � g and f ι = gι.

It is sufficient to consider implications whose left-hand sides belong to a domi-
nating set.

Lemma 9. If D ⊆ L dominates ι, then B := {f → f ιι | f ∈ D} is sound and
complete for ι.

Proof. Soundness has already been shown. To show completeness, let f1 → f2

be an implication that holds in ι. By Lemma 6, f1 → f2 follows from f1 → f ιι
1 .

Hence it is sufficient to show that f1 → f ιι
1 follows from B. Since D dominates

ι, there exists g ∈ D such that f1 � g and gι = f ι
1.

Let i be a model in which all implications of B hold. From f1 � g and
Lemma 2(b) it follows that f i

1 ⊆ gi. Since g → gιι ∈ B holds in i, we also have
gi ⊆ (gιι)i, and thus f i

1 ⊆ (gιι)i. In addition, gι = f ι
1 yields gιι = f ιι

1 . Thus,
f i
1 ⊆ (f ιι

1 )i, which shows that f1 → f ιι
1 holds in i. ��

The sound and complete set of implications B induced by a dominating set D
need not be a basis since it need not be minimal. However, if D is finite, then B
is finite as well. Thus, a subset of B that is a basis can be obtained by removing
redundant elements.
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Fig. 1. A model (left) and a description graph (right)

3 ELgfp as an Instance of the General Framework

We start by defining EL, and then show how it can be extended to ELgfp.
Concept descriptions of EL are built from a set Nc of concept names and a set Nr

of role names, using the constructors top concept, conjunction, and existential
restriction:

– concept names and the top concept  are EL-concept descriptions;
– if C, D are EL-concept descriptions and r is a role name, then C � D and

∃r.C are EL-concept descriptions.

In the following, we assume that the sets Nc and Nr of concept and role names
are finite. This assumption is reasonable since in practice data are usually rep-
resented over a finite signature.

Models of this language are pairs (ΔI , ·I) where ΔI is a finite,1 non-empty
set, and ·I maps role names r to binary relations rI ⊆ ΔI × ΔI and EL-concept
descriptions to subsets of ΔI such that

I = ΔI , (C � D)I = CI ∩ DI , and

(∃r.C)I = {d ∈ Δi | ∃e ∈ CI such that (d, e) ∈ rI}.

Subsumption and equivalence between EL-concept descriptions is defined as in
our general framework, i.e., C � D iff CI � DI for all models I, and C ≡ D iff
C � D and D � C.

Unfortunately, EL itself cannot be used to instantiate our framework since
in general a set of objects need not have a most specific concept in EL. This is
illustrated by the following simple example. Assume that Nc = {P}, Nr = {r},
and consider the model I with ΔI = {a, b}, rI = {(a, b), (b, a)}, and P I = {b}
(see the left-hand side of Fig. 1 for a graphical representation of this model).
To see that the set {a} does not have a most specific concept, consider the
EL-concept descriptions

Ck := ∃r.∃r . . .∃r.︸ ︷︷ ︸
k times

.

1 Usually, the semantics given for description logics allows for models of arbitrary
cardinality. However, in the case of EL the restriction to finite models is without loss
of generality since it has the finite model property, i.e., a subsumption relationship
holds w.r.t. all models iff it holds w.r.t. all finite models.
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We have {a} ⊆ CI
k = {a, b} for all k, and thus a most specific concept C for

{a} would need to satisfy C � Ck for all k ≥ 0. However, it is easy to see
that C � Ck can only be true if the role depth of C, i.e., the maximal nesting
of existential restrictions, is at least k. Since any EL-concept description has a
finite role depth, this shows that such a most specific concept C cannot exist.

However, most specific concepts always exist in ELgfp, the extension of EL by
cyclic concept definitions interpreted with greatest fixpoint (gfp) semantics.2 In
ELgfp, we assume that the set of concept names is partitioned into the set Nprim

of primitive concepts and the set Ndef of defined concept. A concept definition
is of the form

B0 ≡ P1 � . . . � Pm � ∃r1.B1 � . . . � ∃rn.Bn

where B0, B1, . . . , Bn ∈ Ndef , P1, . . . , Pm ∈ Nprim, and r1, . . . , rn ∈ Nr. The
empty conjunction (i.e., m = 0 = n) stands for . A TBox is a finite set of
concept definitions such that every defined concept occurs at most once as a
left-hand side of a concept definition.

Definition 10 (ELgfp-concept description). An ELgfp-concept description
is a tuple (A, T ) where T is a TBox and A is a defined concept occurring on the
left-hand side of a definition in T .

For example, (A, T ) with T := {A ≡ ∃r.B, B ≡ P � ∃r.A} is an ELgfp-concept
description. Any ELgfp-concept description (A, T ) can be represented by a di-
rected, rooted, edge- and node-labeled graph: the nodes of this graph are the
defined concepts in T , with A being the root; the edge label of node B0 is the
set of primitive concepts occurring in the definition of B0; and every conjunct
∃ri.Bi in the definition of B0 gives rise to an edge from B0 to Bi with label ri.
In the following, we call such graphs description graphs. The description graph
associated with the ELgfp-concept description from our example is shown on the
right-hand side of Fig. 1, where A is the root.

Models of ELgfp are of the form I = (ΔI , ·I) where ΔI is a finite, non-empty
set, and ·I maps role names r to binary relations rI ⊆ ΔI × ΔI and primitive
concepts to subsets of ΔI . The mapping ·I is extended to ELgfp-concept de-
scriptions (A, T ) by interpreting the TBox T with gfp-semantics: consider all
extensions of I to the defined concepts that satisfy the concept definitions in T ,
i.e., assign the same extension to the left-hand side and the right-hand side of
each definition. Among these extensions of I, the gfp-model of T based on I is
the one that assigns the largest sets to the defined concepts (see [1] for a more
detailed definition of gfp-semantics). The extension (A, T )I of (A, T ) in I is the
set assigned to A by the gfp-model of T based on I.

Again, subsumption and equivalence of ELgfp-concept descriptions is defined
as in the general framework. The following theorem shows that the description
language ELgfp we have just defined is indeed an instance of the framework
introduced in Section 2.
2 Because of the space restriction, we can only give a very compact introduction of

this DL. See [1,4] for more details.
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Theorem 11. In ELgfp, the most specific concept of a set of objects always
exists.

The proof of this theorem given in [4] is based on the methods and results from
[2]. It proceeds in two steps. First, it is shown how to construct the most specific
concept of a singleton set {a}. The main idea is that the graph representing
the model can also be viewed as the description graph of an ELgfp-concept
description, where the root is the node corresponding to a. In the example (see
Fig. 1), we have simply renamed the lower case individual names into upper
case concept names. The ELgfp-concept description (A, T ) represented by the
description graph on the right-hand side of Fig. 1 is the most specific concept
of {a} in the model represented by the graph on the left-hand side of Fig. 1.
The most specific concept of a set of objects {a1, . . . , an} is the least common
subsumer (lcs) of the most specific concepts of the singleton sets {ai}. In [2] it
is shown that the lcs in ELgfp always exists and how to compute it.

4 A Finite Basis for Implications in ELgfp

We show that the set of implications holding in a given model always has a
finite basis in ELgfp. A first step in this direction is to show that it is enough
to restrict the attention to implications with acyclic ELgfp-concept descriptions
as left-hand sides. The ELgfp-concept description (A, T ) is acyclic if the graph
associated with it is acyclic. It is easy to see that there is a 1–1-relationship
between EL-concept descriptions and acyclic ELgfp-concept descriptions. For
example, (A, {A ≡ B � ∃r.B, B ≡ P}) corresponds to P � ∃r.P , and ∃r.P
corresponds to (A, {A ≡ ∃r.B, B ≡ P}). This shows that EL can indeed be seen
as a sublanguage of ELgfp. In the following, we will not distinguish an acyclic
ELgfp-concept description from its equivalent EL-concept description.

Given an ELgfp-concept description, its node size is the number of nodes in the
description graph corresponding to it. For an acyclic ELgfp-concept description,
we define its depth to be the maximal length of a path starting at the root in
the description graph corresponding to it. Any ELgfp-concept description (A, T )
can be approximated by acyclic ELgfp-concept descriptions (A, T )d of increasing
depth d. To obtain (A, T )d, the description graph associated with (A, T ) is
unraveled into a (possibly infinite) tree, and then all branches are cut at depth
d. It is easy to see that (A, T ) � (A, T )d holds for all d ≥ 0.

Lemma 12. Let U be an ELgfp-concept description of node size m, I a model
of cardinality n, and d = m · n + 1. Then a ∈ (Ud)I implies a ∈ UI .

A detailed proof of this lemma can be found in [4].

Theorem 13. In ELgfp, the set of acyclic concept descriptions dominates every
description context I.

Proof. Let U be an ELgfp-concept description and I a description context. We
must find an acyclic ELgfp-concept description V such that U � V and UI = VI .
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Let m be the node size of U , n the cardinality of I, and d = m · n+1. We know
that U � Ud, and thus also UI ⊆ (Ud)I . Lemma 12 shows that the inclusion in
the other direction holds as well. Thus, V := Ud does the job. ��
By Lemma 9, this theorem immediately implies the following corollary.

Corollary 14. For any description context I of ELgfp, the set

{U → UII | U is an acyclic ELgfp-concept description}
is sound and complete for I.

The complete set of implications given in the corollary is, of course, infinite. Also
note that, though the left-hand sides U of implications in this set are acyclic,
the right-hand sides UII need not be acyclic. We show next that there is also
a finite sound and complete set of implications. As mentioned before, a finite
basis can then be obtained by removing redundant elements.

Theorem 15. In ELgfp, for any description context I, there exists a finite set
B of implications that is sound and complete for I.

Proof. By Corollary 14 it suffices to find a finite and sound set of implica-
tions from which all implications of the form U → UII , where U is an acyclic
ELgfp-concept description, follow. To this purpose, consider the set E := {UI |
U is an ELgfp-concept description}, and let C be a set of ELgfp-concept descrip-
tions that contains, for each set X ∈ E , exactly one element V with VI = X .
Because of Theorem 13, we can assume without loss of generality that C contains
only acyclic descriptions. Since ΔI is finite, the sets E and C are also finite.

Consider the following finite set of implications, which is obviously sound:

B := {P → P II | P ∈ Nprim ∪ {}}
∪ {∃r.C → (∃r.C)II | r ∈ Nr, C ∈ C}
∪ {C1 � C2 → (C1 � C2)II | C1, C2 ∈ C}.

We show that, for any acyclic ELgfp-concept description U , the implication
U → UII follows from B. Since U is acyclic, we can view it as an EL-concept
description. The proof is by induction on the structure of this description.

Base case: U = P ∈ Nprim ∪ {}. Then P → P II is in B by definition. Thus,
it also follows from B.

Step case 1 : U = ∃r.V for some r ∈ Nr and some EL-concept description
V . Let J be a description context in which all implications from B hold. The
semantics of existential restrictions yields

UJ = (∃r.V)J = {x ∈ ΔJ | ∃y ∈ VJ : (x, y) ∈ rJ}.

By the induction hypothesis, V → VII follows from B, and thus holds in J .
Therefore VJ ⊆ (VII)J , which yields

UJ ⊆ {x ∈ ΔJ | ∃y ∈ (VII)J : (x, y) ∈ rJ}.
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Now, choose C ∈ C such that CI = VI . Lemma 2(g) yields VII � C, and thus

UJ ⊆ {x ∈ ΔJ | ∃y ∈ CJ : (x, y) ∈ rJ} = (∃r.C)J .

Since ∃r.C → (∃r.C)II ∈ B holds in J by assumption, we get

UJ ⊆ ((∃r.C)II)J = ({x ∈ ΔI | ∃y ∈ CI : (x, y) ∈ rI}I)J =

= ({x ∈ ΔI | ∃y ∈ VI : (x, y) ∈ rI}I)J = ((∃r.V)II)J = (UII)J .

Thus, we have shown that U → UII holds in every context J in which all
implications from B hold.

Step case 2 : U = U1 � U2 for EL-concept descriptions U1, U2. Let J be a
description context in which all implications from B hold. By the induction
hypothesis, UJ

1 ⊆ (UII
1 )J and UJ

2 ⊆ (UII
2 )J . Therefore

UJ = (U1 � U2)J = UJ
1 ∩ UJ

2 ⊆ (UII
1 )J ∩ (UII

2 )J .

We choose C1, C2 ∈ C such that CI
1 = UI

1 and CI
2 = UI

2 . Then

UJ ⊆ (CII
1 )J ∩ (CII

2 )J ⊆ CJ
1 ∩ CJ

2 = (C1 � C2)J ,

where the second inclusion holds due to Lemma 2(d). Since the implication
C1 � C2 → (C1 � C2)II ∈ B holds in J , we get

UJ ⊆ ((C1 � C2)II)J = ((CI
1 ∩ CI

2 )I)J = ((UI
1 ∩ UI

2 )I)J =

= ((U1 � U2)II)J = (UII)J .

This shows that U → UII follows from B. ��
Corollary 16. In ELgfp, for any description context I there exists a finite basis
for the implications holding in I.

Proof. Starting with B∗ := B, where in the beginning all implications are un-
marked, take an unmarked implication U → V ∈ B∗. If this implication follows
from B∗, then remove it, i.e., B∗ := B∗ \ {U → V}; otherwise, mark U → V .
Continue with this until all implications in B∗ are marked. The final set B∗ is
the desired basis. ��

5 A Finite Basis for Implications in EL
Although the sublanguage EL of ELgfp is not an instance of our general frame-
work, we can nevertheless show the above corollary also for this language. Be-
cause of Proposition 5, it is sufficient to show that in ELgfp any description
context I has a finite basis consisting of implications where both the left-hand
and the right-hand sides are acyclic.

The following proposition will allow us to construct a finite set of implications
with acyclic right-hand sides from which a given implication U → UII (with
potentially cyclic right-hand side) follows. Recall that, for any ELgfp-concept
description U , we obtain the acyclic description Ud by unraveling the description
graph and then cutting all branches at depth d.
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Proposition 17. Let k0 be a non-negative integer, I a description context, and
U be an ELgfp-concept description. Then the implication U → UII follows from

B := {(XI)k0 → (XI)k0+1 | X ⊆ ΔI} ∪ {U → (UII)k0}.

Proof. The proof depends on the following technical result, whose proof can be
found in [4].

(∗) For any set X ⊆ ΔI , there exist sets P ⊆ Nprim and Y ⊆ Nr × P(ΔI) such
that

XI ≡
�

P∈P
P �

�

(r,Y )∈Y
∃r.Y I .

The above equivalence is actually an abbreviation for saying that XI is of the
form (A, T ) where T consists of the following concept definitions:

– A ≡ �

P∈P P � �

(r,Y )∈Y ∃r.Br,Y ;
– the definitions in the TBoxes Tr,Y for (r, Y ) ∈ Y where Y I = (Br,Y , Tr,Y ).

Note that the sets of defined concepts in the TBoxes Tr,Y can be assumed to be
pairwise disjoint and not to contain A.

To prove the proposition, we first show, by induction on �, that the implica-
tions (XI)� → (XI)�+1 follow from B for all � ≥ k0. For � = k0 this is trivial
because (XI)k0 → (XI)k0+1 ∈ B.

Now, assume that (Y I)k → (Y I)k+1 follows from B for every Y ⊆ ΔI and
every k, k0 ≤ k < �. Let J be a model in which all implications from B hold.
Then, by the induction hypothesis, we get

((Y I)k)J ⊆ ((Y I)k+1)J (3)

for all k0 ≤ k < � and all Y ⊆ ΔI . By (∗), for any set X ⊆ ΔI , there exist sets
P ⊆ Nprim and Y ⊆ Nr × P(ΔI) such that

XI ≡
�

P∈P
P �

�

(r,Y )∈Y
∃r.Y I .

It is easy to see that this implies

(XI)� ≡
�

P∈P
P �

�

(r,Y )∈Y
∃r.(Y I)�−1 (4)

and
(XI)�+1 ≡

�

P∈P
P �

�

(r,Y )∈Y
∃r.(Y I)�. (5)

Thus, we have
(
(XI)�

)J (4)
=

( �

P∈P
P �

�

(r,Y )∈Y
∃r.(Y I)�−1

)J

=
�

P∈P
P J �

�

(r,Y )∈Y
{x ∈ ΔJ | ∃y ∈ ((Y I)�−1)J : (x, y) ∈ rJ}.
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From (3) we obtain ((Y I)�−1)J ⊆ ((Y I)�)J , and thus
(
(XI)�

)J

⊆
�

P∈P
P J �

�

(r,Y )∈Y
{x ∈ ΔJ | ∃y ∈ ((Y I)�)J : (x, y) ∈ rJ}

=
( �

P∈P
P �

�

(r,Y )∈Y
∃r.(Y I)�

)J

(5)
=

(
(XI)�+1

)J

.

Hence we have shown that (XI)� → (XI)�+1 follows from B, which concludes
the induction proof.

Now, let J again be a model in which all implications from B hold, and let
x ∈ UJ . We must show that this implies x ∈ (UII)J . We have x ∈ ((UII)k0)J

because U → (UII)k0 ∈ B. Hence x ∈ ((UII)k)J for all k ≤ k0 since (UII)k0 �
(U II)k for all k ≤ k0. From what we have shown above, we know that

(U II)k → (UII)k+1

follows from B for all k ≥ k0. Thus ((UII)k)J ⊆ ((UII)k+1)J holds in J for all
k ≥ k0, which yields x ∈ ((UII)k)J also in this case.

Therefore x ∈ ((UII)k)J for k = |GU | · |ΔJ | + 1, independently of whether
this number is smaller or larger than k0. It follows directly from Lemma 12 that
x ∈ (UII)J . Thus, we have shown that

UJ ⊆ (UII)J

if all implications from B hold in J . This means that U → UII follows from
B. ��
Having proved Proposition 17, we are almost finished with constructing a finite,
sound and complete set of acyclic implications for the implications holding in
a description context I. The idea is to replace any implication U → UII in
the finite, sound and complete set of implications constructed in the proof of
Theorem 15 by the corresponding implications from Proposition 17.

The remaining problems is, however, that the set of implications obtained this
way need not be sound for I. Indeed, if k0 is too small, then the implications
in {(XI)k0 → (XI)k0+1 | X ⊆ ΔI} need not hold in I. Therefore, we define for
every X ⊆ ΔI

dX := mX · n + 1,

where mX is the node size of XI and n is the cardinality of the model I. The
number k0 is the maximum of these numbers, i.e.,

k0 := max
X⊆ΔI

dX . (6)

Then, because dX ≤ k0 for every X ⊆ ΔI , we have

XI � (XI)k0+1 � (XI)k0 � (XI)dX .
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By Lemma 2(b), this implies

XII ⊆ ((XI)k0+1)I ⊆ ((XI)k0)
I ⊆ ((XI)dX )I .

From Lemma 12 we obtain XII ⊇ ((XI)dX )I , and thus

XII = ((XI)k0+1)I = ((XI)k0)
I = ((XI)dX )I .

In particular, this shows

((XI)k0 )
I ⊆ ((XI)k0+1)I .

Hence, all implications in {(XI)k0 → (XI)k0+1 | X ⊆ ΔI} hold in I.

Theorem 18. In ELgfp, for any description context I, there exists a finite set
B of implications that is sound and complete for I, and such that all concept
descriptions occurring in B are acyclic.

Proof. Let C be the set of acyclic ELgfp-concept descriptions defined in the proof
of Theorem 15. We have shown in that proof that the set

B� := {P → P II | P ∈ Nprim ∪ {}}
∪ {∃r.C → (∃r.C)II | r ∈ Nr, C ∈ C}
∪ {C1 � C2 → (C1 � C2)II | C1, C2 ∈ C}

is complete for I.
Let k0 be defined as in (6). Then, by Proposition 17, the fact that B� is

complete also implies that the following set of implications is complete for I:

B := {(XI)k0 → (XI)k0+1 | X ⊆ ΔI}
∪ {P → (P II)k0 | P ∈ Nprim ∪ {}}
∪ {∃r.C → ((∃r.C)II)k0 | r ∈ Nr, C ∈ C}
∪ {C1 � C2 → ((C1 � C2)II)k0 | C1, C2 ∈ C}.

Regarding soundness, we have shown above that, due to the fact that k0 was
chosen large enough, all implications of the form (XI)k0 → (XI)k0+1 hold I. The
implications P → (P II)k0 hold because P → P II holds in I, and P II � (P II)k0 .
The same arguments can be used to show that the implications of the forms
∃r.C → ((∃r.C)II)k0 and C1 � C2 → ((C1 � C2)II)k0 hold in I.

The left-hand sides of implications in B are acyclic since the elements of C
are acyclic, primitive concepts and  are acyclic, and any concept description of
the form Uk is acyclic. This last argument also shows that the right-hand sides
of implications in B are acyclic. ��
Since B contains only acyclic ELgfp-concept descriptions, it can also be viewed
as a set of implications in EL. Proposition 5, together with Theorem 18, shows
that B is also complete for the EL-implications holding in I. As argued before,
the existence of a finite, sound and complete set also implies the existence of a
basis.

Corollary 19. In EL, for any description context I, there exists a finite basis
for the implications holding in I.
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6 Conclusion

We have shown that any description context I (i.e., any finite relational struc-
ture over a finite signature of unary and binary predicate symbols) has a finite
basis for the EL- and ELgfp-implications holding in I. Such a basis provides
the knowledge engineer with interesting information on the application domain
described by the context. The knowledge engineer can, for example, use these
implications as starting point for building an ontology describing this domain.

In this paper, we have concentrated on showing the existence of a finite ba-
sis. Of course, if this approach is to be used in practice, we also need to find
efficient algorithms for computing the basis. After that, the next step will be
to generalize attribute exploration [9] to our more general setting. This would
allow us to consider also relational structures that are not explicitly given, but
rather “known” by a domain expert.

Finally, we will also try to show similar results for other DLs. For the DL
FL0, which differs from EL in that existential restrictions are replaced by value
restrictions, we are quite confident that this is possible. For more expressive DLs,
like ALC, this is less clear.
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Abstract. In order to overcome human and time resource problems in the task
of ontology design, we propose to combine the LExO approach to learning ex-
pressive ontology axioms from textual definitions with Relational Exploration –
a technique based on the well-known attribute exploration algorithm from FCA
which is used to interactively clarify underspecified logical dependencies. By
forcing particular modeling decisions the exploration of classes and class ex-
tension relationships guarantees completeness with respect to a certain logical
fragment and increases the overall quality of the ontology. Providing an imple-
mentation as well as an example, we demonstrate how ontology learning and
exploration complement each other in a synergetic way.

1 Introduction

In the prospering Semantic Web research field, ontologies – logical domain specifica-
tions useful for automatically drawing conclusions about the described domain – have
taken a central role. Yet, building ontologies is a diÆcult and time-consuming task, re-
quiring to combine the knowledge of domain experts with the skill and experience of
ontology engineers resulting in a high demand on scarce expert resources. Moreover, the
size of knowledge bases needed in real world applications easily exceeds the modeling
capabilities of any human expert. On the other hand, both quality and expressivity of the
ontologies generated automatically by the state-of-the-art ontology learning systems fail
to meet the expectations of people who argue in favor of powerful, knowledge-intensive
applications based on ontological reasoning.

In order to overcome this bottleneck, it is necessary to thoroughly assist the modeling
process by providing hybrid semi-automatic methods which (i) intelligently suggest
potentially relevant knowledge elements (complex domain axioms or facts) extracted
from resources such as domain relevant text corpora and (ii) provide guidance during
the knowledge specification process by asking decisive questions in order to clarify still
undefined parts of the knowledge base.

Obviously, those two requirements complement each other. The first one clearly falls
into the area of natural language processing. By using existing methods for knowledge
extraction from texts, passages can be identified which indicate the validity of certain
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NeOn, and by the Deutsche Forschungsgemeinschaft (DFG) under the ReaSem project.
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pieces of knowledge. For the second requirement, strictly logic-based exploration tech-
niques such as the the well-known and well-established attribute exploration from for-
mal concept analysis (and its variants and extensions) are needed in order to obtain
logically crisp propositions. We believe that integrating these two directions of knowl-
edge acquisition in one scenario will help overcoming disadvantages of either approach.
The framework proposed in this paper realizes this integration and shows its potential
for practical applications.

In Section 2, we briefly introduce the description logic����� . Section 3, sketches
the field of ontology learning before presenting LExO as one method for acquiring DL
axioms from texts. Section 4 gives the necessary background for Relational Explo-
ration (RE), a technique used for interactive knowledge specification based on FCA. In
Section 5, we describe in detail how LExO and RE (possibly assisted by other ontol-
ogy learning components) can be synergetically combined in the process of ontology
engineering and evaluation. Implementation details as well as an example are given in
Section 6. Finally, Section 7 concludes and gives an outlook to future research.

2 Preliminaries

Here, we will very briefly introduce the description logic����� . A ����� knowl-
edge base (KB, also: ontology) is based on sets NR (role names) C (atomic concepts)
and I (individuals). The set of ����� roles is R � NR � �R� � R 	 NR
. In the follow-
ing, we leave this vocabulary implicit and assume that A, B are atomic concepts, a, b,
i are individuals, and R, S are roles. Those can be used to define concept descriptions
employing the constructors from the upper part of Table 1. We use C, D to denote con-
cept descriptions. Moreover, a ����� KB consists of two finite sets of axioms that
are referred to as TBox and ABox. The possible axiom types for each are displayed in
the lower part of Table 1.

Note that we do not explicitly consider concept or role equivalence �, since it can
be modeled via mutual concept or role inclusions. We adhere to the common model-
theoretic semantics for ����� with general concept inclusion axioms (GCIs): an
interpretation � consists of a set � called domain together with a function �� mapping
individual names to elements of �, class names to subsets of �, and role names to subsets
of �  �. This function is inductively extended to roles and concept descriptions and
finally used to decide whether the interpretation satisfies given axioms (see Table 1).
����� serves as the theoretical basis for the web ontology language OWL DL as

defined in [1]. OWL DL constitutes a standardized knowledge representation language
well established in the Semantic Web domain. It is a fragment of first order predicate
logic with the advantage of being decidable and even the availability of optimized rea-
soners for it.

3 Lexical and Logical Knowledge Acquisition

Ontology generation from natural language text, or lexical resources – most commonly
referred to as “ontology learning” – is a relatively new field of research which aims to
support the tedious task of knowledge acquisition by automatic means.
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Table 1. Role�concept constructors and axiom types in ����� . Semantics refers to an inter-
pretation � with domain �. As usual, we require to restrict number restrictions to simple roles,
i.e. (roughly speaking and omitting further technical details) roles that do not include roles which
are declared to be transitive.

Name Syntax Semantics

inverse role R� �(x� y) � (y� x) � R�	

top 
 �

bottom � �

nominal �i	 �i�	
negation C � � C�

conjunction C � D C� � D�

disjunction C � D C� � D�

universal restriction �R�C �x � (x� y) � R� implies y � C�	

existential restriction �R�C �x � for some y � �� (x� y) � R�� y � C�	

(unqualified) number � n R �x � #�y � � � (x� y) � R�	 � n	
restriction � n R �x � #�y � � � (x� y) � R�	 � n	
role inclusion S � R S � � R� TBox
transitivity Trans(S ) S � is transitive TBox
general concept inclusion C � D C� � D� TBox
concept assertion C(a) a� � C� ABox
role assertion R(a� b) (a�� b�) � R� ABox

However, many of today’s ontology learning approaches build upon methods and
ideas which were developed by (computational) linguists long before ontologies be-
came a popular means of knowledge representation. Ontology learning techniques
based, e.g., on lexico-syntactic patterns [2], or Harris’ distributional hypothesis [3]
draw from previous advances in lexical acquisition, and terminology research which
have been to a major extent focusing on the extraction of lexical relations. However,
there is a tacit agreement in the ontology learning community that there exists a certain
correspondence between lexical relations (e.g. hyponymy, synonymy), and ontological
axioms (e.g. subsumption, equivalence). This assumption which is not only prevalent
in ontology learning, but also influences manual ontology engineering1 led to a kind of
“lexical”, i.e., lexically inspired ontology generation implemented in frameworks such
as OntoLearn [4], OntoLT [5] or Text2Onto [6].

One may argue that due to the di�erences between lexical semantics, and the model-
theoretic semantics of description logics (see also [7]), this type of approach will always
yield at best light-weight, semi-formal ontologies without precisely defined semantics,
being grounded in natural language more than in logics. On the other hand, lexical ap-
proaches to ontology generation o�er a lot of advantages: They can benefit from large
amounts of lexical resources such as machine-readable dictionaries, encyclopedias, and
all kinds of web documents that are available in abundance on the web. The resulting
ontologies are usually close to the human way of modeling, since they provide lexi-
calizations of classes, individuals and properties, thus being easily comprehensible and

1 In fact, if one tries to explain the semantics of subsumption to a non-logician, one often resorts
to “clue phrases” similar to lexico-syntactic patterns which themselves reflect lexical relations.
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reusable. Finally, most of these approaches are very flexible with respect to the degree
of user interaction, and relatively easy to combine with other, complementary or sup-
porting ontology learning methods.

Besides those lexical methods, a second direction of ontology learning has received
more and more attention during the last couple of years. Approaches based on Inductive
Logic Programming (ILP) [8,9] and Formal Concept Analysis (FCA) [10] have been
developed in the logics community, for some reason widely unappreciated by lexical
ontology learning research. Although there are a few approaches aiming to reconcile
the two worlds by using either FCA [11,12] or ILP [13] for lexical ontology acqui-
sition, none of them has been designed specifically for the refinement of OWL DL
ontologies or knowledge bases. Common to all those approaches is their idea to ac-
quire knowledge based on presented domain entities and their properties. However, this
type of logical ontology generation is often less eÆcient than lexical approaches, and
requires a relatively large amount of manually acquired knowledge (e.g. ABox state-
ments for taxonomy induction). The resulting ontologies lack the traceability of a nat-
ural language grounding, and meaningful labels for complex class descriptions. Their
expressivity is typically restricted to some variant of ���. On the other hand, those
approaches have several advantages. Since they are based on already structured, formal
data, they naturally come with a precisely defined, formal set-theoretic semantics. Thus
being on “safe logical grounds”, it is guaranteed that the acquired knowledge is also
logically consistent.

Despite their respective advantages, both lexical and logical approaches to automatic
(or semi-automatic) ontology engineering have failed to meet all the expectations of
people arguing in favor of knowledge-intensive, reasoning-based applications, e.g., in
domains such as bio-informatics or medicine. In particular, expressivity and quality of
the resulting axiomatizations are often insuÆcient for practical use. In order to meet
these fundamental requirements, a few lexical approaches towards learning more ex-
pressive ontologies, i.e. ontologies featuring the expressiveness of OWL DL, have been
proposed recently [7,14]. But these approaches have to face a lot of challenges which
need to be overcome in order to make them useable in practice. Obviously, the more
expressive learned (or manually engineered) ontologies become, the more important
it will be to provide automatic support for quality assurance, since the diÆculty of a
purely manual revision rises with the growing complexity of the ontology. On the other
hand, applications relying on reasoning over complex ontologies make it necessary to
consider a larger variety of qualitative aspects which must be taken into account as an
ontology is being learned or constructed, including logical consistency, and complete-
ness. Notwithstanding, there exist only very few frameworks aiming at a tight integra-
tion of methods for ontology learning and evaluation. Although, e.g., Haase et al. [15]
propose a way to deal with logical inconsistencies in lexically generated ontologies the
problem of modeling completeness has been largely neglected up to now.

In this paper, we therefore present an approach to ontology acquisition which e�ec-
tively combines the strengths of the two complementary directions of research while at
the same time compensating for many of their respective disadvantages. It relies upon
Relational Exploration, an FCA-based approach to systematic, logical refinement (cf.
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Section 4), and the automatic generation of formal class descriptions by means of natu-
ral language processing techniques which is described in the remainder of this Section.

LExO2 (Learning EXpressive Ontologies) [7] is an approach towards the automatic
generation of ontologies featuring the expressiveness of OWL DL. The core of LExO
is a syntactic transformation of definitory natural language sentences into description
logic axioms. Given a natural language definition of a class, LExO starts by analyz-
ing the syntactic structure of the input sentence. The resulting dependency tree is then
transformed into a set of OWL axioms by means of manually engineered transforma-
tion rules. Possible input resources for LExO include all kinds of definitory sentences,
i.e. universal statements about concepts, that can be found in online glossaries such as
Wikipedia3, comments in the ontology, or simply given by a domain expert.

In order to exemplify the approach, we assume that we would like to refine the de-
scription of the class Reviewer the semantics of which could be informally described
as follows: A reviewer is a person who reviews a paper that has been submitted to a
conference or workshop.4 We will come back to this example in Section 6.

A minimum set of rules for translating this sentence into a DL class description
is given by Table 2 (for a more complete listing of possible transformation rules and
further explanations see [7]).

Table 2. Transformation Rules for Reviewer

Rule Natural Language Syntax OWL Axioms
Disjunction X: NP0 �� NP1 X � (NP0 �NP1)
Copula X: NP0 VBE NP1 NP0 � NP1

Relative Clause X: NP0 C(rel) VP0 X � (NP0 �VP0)
Verb with Prep. Compl. X: V0 Prep0 NP(pcomp-n)0 X � �V0_Prep0�NP0

Depending on the concrete set of translation rules and modeling preferences of the
user, a translation of this sentence into OWL DL could then yield the following axioms:

reviewer
� a_person_who_reviews_a_paper_that_has_been_submitted_to_a_conference_or_workshop
a_person_who_reviews_a_paper_that_has_been_submitted_to_a_conference_or_workshop
� a_person � reviews_a_paper_that_has_been_submitted_to_a_conference_or_workshop
reviews_a_paper_that_has_been_submitted_to_a_conference_or_workshop
� �reviews.a_paper_that_has_been_submitted_to_a_conference_or_workshop
a_paper_that_has_been_submitted_to_a_conference_or_workshop
� a_paper � has_been_submitted_to_a_conference_or_workshop
has_been_submitted_to_a_conference_or_workshop
� �has_been_submitted_to.a_conference_or_workshop
a_conference_or_workshop � (a_conference � workshop)

2 ����������������������������������
3 ����������������
������
4 Depending on the intended meaning of Reviewer other, broader definitions (e.g. covering re-

views of journal articles, or research projects) might be more adequate, but we wanted to keep
the example as simple as possible.

http://ontoware.org/projects/lexo/
http://en.wikipedia.org
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Obviously, the above set of axioms can be normalized, and turned into a semantically
equivalent, unfolded, representation:

Reviewer � Person � �review.
�
Paper � �submitted_to.(Conference � Workshop)

�

While such a compact class description might be easier to grasp at first glance (at
least for ontology engineers being familiar with logics), the first axiomatization obvi-
ously conveys a lot of additional information to the human reader. The fact that each
part of the overall class description (e.g. Conference �Workshop) is associated with an
equivalent atomic class (e.g. a_conference_or_workshop) makes completely transpar-
ent how this axiomatization was constructed, and at the same time provides the user
with an intuitive explanation of the semantics of each class description. Further advan-
tages of the extended axiomatization are discussed in Section 5.

4 Relational Exploration

In order to sketch relational exploration (RE, introduced in [16] and thoroughly treated
in [10]), we first need to briefly recall some basic notions from FCA (see [17] for further
reference).

A (formal) context � is a triple (G� M� I) with an arbitrary set G (called objects), an
arbitrary set M (called attributes), and a relation I � G  M (called incidence relation).
We read gIm as: “object g has attribute m.” Furthermore, let gI :� �m � gIm
. An
implication on an arbitrary set M is written A� B with A� B � M. It holds in a formal
context � � (G� M� I), if for all g 	 G we have that A � gI implies B � gI . We then
write � �� A� B. A set � of implications entails A� B if A� B holds in all contexts
wherein all implications from � hold.

An implication set � will be called non-redundant, if for any (A� B) 	 � we have
that � � �A� B
 does not entail A� B. � will be called complete w.r.t. a context �, if
every implication A� B holding in � is entailed by �. � will be called an implication
base of � if it is non-redundant and complete. Since implication entailment is known
to be decidable in linear time [18], the implication base allows fast handling of an
implicational theory. The classical attribute exploration algorithm [19,20] provides a
method for eÆciently determining an implicational base of a formal context that is only
implicitly known by an expert.

The technique of RE extends this algorithm to a DL setting: Given an interpretation
� on a domain � and a set M of ����� concept descriptions, the corresponding �-
context is defined by ��(M) :� (�� M� I) with ÆIC :� Æ 	 C�� Then it can be easily
shown, that implications in�� coincide with certain axioms w.r.t. their validity in �: for
��� � M, the implication ��� holds in �� if and only if � satisfies the DL axiom�
� �
�
�� Hence it is possible to explore DL axioms (more precisely: general concept

inclusion axioms, short: GCIs) with this technique. In an interview-like process, a do-
main expert has to judge whether a proposed GCI is valid in the domain (formally: the
interpretation �) he is describing and in the negative case provide a counterexample.5

Since OWL DL [1] – the standard language for representing ontologies – is based on
description logics, the RE method easily carries over to any kind of ontologies specified
in that language.

5 This will be further elaborated and demonstrated in the subsequent sections.
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Especially when working in an OWL or DL setting, the open world assumption
is omnipresent; most of the known objects will not be completely specified, i.e., for
certain classes it might be unknown whether the considered individual is an instance.
Hence, it is essential for exploration methods to be capable of dealing with this kind
of information. Lately, there has been significant work on applying FCA results on
partial information (e.g. described in [21,20]) to the ontology refinement setting. An
according approach (briefly sketched in [10]) has been fully theoretically elaborated
and implemented as described in [22]. It allows to use partly specified objects as coun-
terexamples for hypothetical implications. We decided to follow this approach, hence
the implementation presented in the remainder of this paper allows for handling partial
contexts.

The advantage of RE is that the obtained results are logically crisp and naturally
consistent. Moreover, the acquired information is complete with respect to certain
well-defined logic fragments of OWL DL.6 Yet, one major shortcoming of RE is the
following: due to the aimed-at completeness, the number of asked questions (and
therefore, the runtime and the workload for the expert) grows rapidly with the num-
ber of involved concepts and roles which threatens to exceed the ontology designers
resources.

In order to counter this we propose a combination of two strategies: firstly, we use an
OWL DL reasoner to determine whether the answer to a question posed by the explo-
ration algorithm can be deduced from a previously given background knowledge ontol-
ogy. Secondly we use lexical ontology learning to determine a relatively small number
of relevant classes to focus on. Both points will be elaborated in the next section.

5 An Integrated Approach to Ontology Refinement

In the sequel, we will describe how LExO and RE can be synergetically combined
by giving a comprehensive description of the integrated algorithm. En route, we will
briefly mention how other lexical ontology learning techniques could be beneficially
used within that process. In addition to the LExO and RE component, an OWL DL
reasoner will be applied in order to draw conclusions that are already implicitly present,
i.e. entailed by the actual knowledge base making an intervention of the user obsolete.

Creation of new Definitions and Mappings. We start with an OWL DL ontology��
to be refined with respect to a (new or already contained) class C, for which a natural
language definition is provided by some textual resource. This textual definition is then
analyzed by LExO yielding a set ��’ of OWL DL axioms as described in Section 3.
Most likely, some (or even most) of the named classes those axioms refer to will not
be present in ��. Therefore, at least the primitive classes amongst those – i.e. those
classes not stated to be equivalent to a complex class description7 – should be linked
to ��. There are several ways for doing that. If textual definitions are available, LExO
could be employed “recursively”, i.e., it might be applied to the definitions of the classes
in question in order to obtain other classes that can be linked to �� more easily. In any
case, ontology mappings between �� and ��’ could be either added manually or

6 Which fragment precisely depends on which variant of RE is used.
7 These are the classes occurring explicitly in the normal form (cf. Section 3).
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established by one or several of the well-known mapping tools like FOAM8 [23]. So let
Map be a (possibly empty) set of respective mapping axioms.

Selection of Relevant Classes. In the next step, we stipulate the focus of the subsequent
exploration, by selecting the named classes from �� � ��� whose logical dependen-
cies shall be further clarified. A natural default choice for this would be the set of all
named classes from ��’, as we might suppose the (remaining) classes from �� to
be modeled in a suÆciently precise way – an assumption that might be disproved later
on. However, it might be reasonable to include some of the classes from �� as well.
Knowledge extraction methods that determine the relevance of terms (like those of-
fered by Text2Onto [6]) could be employed for an automatic selection or to generate
reasonable suggestions. In any case, let C denote the set of selected attributes.

After this selection of relevant named classes, a basic fact from FCA allows to further
restrict C: put into DL notation, it assures the dispensability of a class C 	 C whenever
there is a set D � �D1� � � � � Dn
 � C � �C
 such that C � D1 � � � � � Dn follows from all
knowledge��� :� ������ � Map stated so far.9 It takes just a little consideration
that this is the case i�

��� ��
� �

D
��� D 	 C � �C
� ��� �� C � D

�
� C�

such that the elimination of redundant classes from C requires just O(�C�2) reasoner
calls in the worst case. Let C� denote the result of this reduction process.

Exploration. Now we start RE as described in Section 4 on the concept set C�. A
work flow diagram of the procedure is displayed in Figure 1. For every hypothetical DL
axiom C1 � � � � � Cn � D1 � � � � � Dm brought up by the exploration algorithm:

– Employ the reasoner to check whether this GCI is a consequence of ��� . If so,
confirm the implication and continue the exploration with the next hypothesis.

– Employ the reasoner to query for all individuals � with C1 � � � � � Cn � �Di(�) for
an i from 1� � � � �m, i.e., for instances of the class which characterizes the property
for being a material counterexample10 for the hypothetical GCI. Let � be the set of
individuals retrieved this way. If � � �, select one � 	 � and check for every C 	

C whether C(�) or �C(�). Then the counterexample together with the information
about the attributes it provably has or has not is passed to the exploration algorithm.
Optionally the human expert – possibly assisted by lexical knowledge retrieval tools
– might be asked to complete the assertions for � in order to get a more specific
description for it. In any case, after providing �, the exploration will proceed with the
next hypothesis.

– If the DL axiom in question can be neither automatically proved nor declined (the
latter meaning � � �), the human will be asked for the ultimate decision whether

8 ����������������	���������	���
��� !�"������"�
9 In FCA terms this can be conceived as a kind of a-priori attribute reduction. Note that this

process is nondeterministic. In case two classes happen to be equiextensional, we nondeter-
ministically remove one of them.

10 Material counterexamples are objects for which is known which part of the conclusion they
violate. The exploration algorithm (even the one dealing with partial knowledge) can only
make use of this kind of counterexamples.

http://www.aifb.uni-karlsruhe.de/WBS/meh/foam/
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Fig. 1. Relational Exploration process (the gear wheels indicate ontology management activities
including reasoning and updates, whereas the thinker icon marks user involvement)

the axiom is satisfied in the described domain � or not. Again, ontology learning
tools could support him by suggesting answers endowed with a probability, or simply
scanning a corpus for potential hints and presenting selected passages.

The exploration terminates after finitely many steps, yet it may also be stopped by
the user beforehand. In the latter case, the internal order of the classes from the set C�

is relevant since it determines the order of the posed questions. Hence, it is beneficial
to sort those classes w.r.t. their relevance, possibly based on textual information. After
the exploration cycle being finished, we have obtained a refined knowledge base ���

containing the (possibly new) class C endowed with its definition (as extracted from the
textual definition) and its interrelationships with concepts from the original knowledge
base. Additionally, the “semantic neighborhood” of C has been made logically explicit
by interactive exploration. In fact, any subsumption between conjunctions of classes
from C can be decided (i.e. proven or disproven) based on the refined knowledge base.
This also shows the advantage of introducing atomic classes for the complex concept
descriptions occurring in the LExO output as demonstrated in Section 3: although RE
as applied in this case11 deals only with conjunctions on atomic classes, we introduce
more expressivity “through the back-door” by having complex definitions for those
named classes in our ontological background ready to be exploited by the reasoner.

The synergies provided by the presented combination are manifold: Firstly, the
classes contained in the definitions provided by LExO provide a reasonable small to
medium size “exploration scope” being crucial for a reasonable application of the RE
technique. Secondly, we can use textual information for generating ontological informa-

11 Actually, RE provides means for exploring GCIs in whole ��� with bounded role depth,
however we restrict to conjunctions on atomic classes in this example.
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tion (a source not accessible to purely logical approaches) yet being able to interactively
clarify logical dependencies that have been left open by the text. The latter is done in a
guided way ensuring completeness.

Overall, the proposed framework provides means for interactively integrating learned
or manually acquired axiomatizations into an existing ontology, while at the same time
facilitating their evaluation and refinement.

6 Implementation and Example

In order to prove the feasibility of a synthesis of ontology learning and RE as described
in Section 5, we implemented a prototypical application named RELExO. Both sources
and binaries of RELExO are available for public use and can be downloaded from
its homepage12 which has been set up to provide further information with respect to
our experiments on ontology learning and relational exploration. RELExO relies upon
KAON213 as an ontology management back-end and features a simple graphical user
interface. Its architecture is depicted by Figure 2.

Fig. 2. RELExO Architecture

LExO, possibly complemented by other ontology learning components, generates or
extends the initial set of axioms �� (mappings can be added by FOAM, if necessary),
and initializes the partial context � by suggesting a set of attributes C to the user. The
actual refinement process is handled by a RE component which manages the partial
context � and the implication set �. Both are updated based on answers obtained from
the “expert team” constituted by the KAON2 reasoner, an optional ontology learning
component as well as the human knowledge engineer.

We now illustrate the integrated ontology refinement process which has been elab-
orated on in Section 5 by means of a real-world example. The complete material

12 ��������������������������
13 �����������#���"������������

http://relexo.ontoware.org
http://kaon2.semanticweb.org
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necessary for reproducing this example, i.e. ontologies and screenshots, is contained
in the RELExO distribution.

The SWRC (Semantic Web for Research Communities)14 [24] ontology is a
well-known ontology modeling the domain of Semantic Web research. Version 0.7
contains 71 classes, e.g., for di�erent types of persons, publication, and events,
48 object properties, 46 datatype properties, and an overall number of 672 ax-
ioms. Its expressiveness is slightly beyond OWL DLP featuring subsumption, prop-
erties, and a few disjointness axioms. The ontology serves as a basis for se-
mantic annotation in the AIFB web portal15 which manages information about
more than 2,000 persons, projects, and publications. For the purpose of our ex-
periment, we exported all instance data stored in the AIFB portal into one sin-
gle OWL file (more than 3 Megabytes in RDF syntax), and merged it with the
corresponding TBox, i.e. the latest version of SWRC. After minor syntactic cor-
rections (removing non XML-compliant characters), we obtained a considerably
large ontology. Debugging with RaDON16 revealed two inconsistencies caused by
conflicting range specifications of data properties which could be fixed without
diÆculty.

Subsequently (in order to keep the example simple and rule out a few trivial questions
that would otherwise come up in the exploration phase), we added axioms stating the
disjointness of the SWRC top-level concepts Person, Event, and Publication – obvi-
ously true axioms yet not present in the current version of this ontology. Those axioms
could also have been generated automatically by techniques for learning disjointness
from [14]. However, adding these axioms turned the ontology inconsistent again as
some individuals were inferred to instantiate both Person and Publication. The rea-
son for this inconsistency was an incorrect use of the editor relationship in SWRC.
Although its domain was restricted to Person (“editor_of ”), the property was appar-
ently conceived to have “has_editor” semantics by most of the annotators. We fixed
this inconsistency by changing the definition of editor accordingly. Another problem
became apparent after we had already started the exploration of the resulting ontology
with RELExO. An individual (in our opinion) belonging to the class ResearchPaper
was proposed as a counterexample, but could not be classified as a such. A closer look
at both individual and ontology showed that it was assigned to the class InProceedings
which was declared disjoint from ResearchPaper, the latter actually being empty. Since
we found that this modeling decision is not justified by the associated comments in the
ontology, we simply removed the disjointness axiom.

To demonstrate the RELExO approach, we assume that we would like to add a new
class Reviewer to the SWRC ontology. Part of a change request could be a natural lan-
guage description of this class such as “a reviewer is a person who reviews a paper that
has been submitted to a conference or workshop” (cf. Section 3). Given this definitory
sentence, LExO automatically suggests an axiomatization of Reviewer to the user who
can correct or remove some of the generated axioms before they are added to the on-
tology. Applying FOAM for suggesting mappings between the newly introduced class

14 ����������������������������������
15 ����������������	���������	���
�
16 ���������
���������������

http://ontoware.org/projects/swrc/
http://www.aifb.uni-karlsruhe.de
http://radon.ontoware.org
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names and those already present in SWRC, we find Paper to be equivalent to Research-
Paper and add a corresponding equivalence axiom to the extended ontology. Likewise,
we find Person, Conference and Workshop already present in the original ontology.

In the next step, the set of “relevant” classes has to be selected. As mentioned in
Section 5, it is reasonable to choose those atomic classes present in the definition of Re-
viewer. We decided to add two more classes denoting undergraduate and PhD students
and (introducing abbreviations for overly long concept names from ��’) we set:

C� :� ���CoW�Conference� SubCoW�Person�PhDStudent�
ResearchPaper�RevPSubCoW�Undergraduate�Workshop
�

Based on this set of classes, the RE algorithm is started. The first hypothetical DL
axiom, the exploration comes up with is � � �. Naturally, this hypothesis cannot be
deduced from the ontology. Hence, following the description in Section 5, KAON2 will
query the knowledge base for instances of � � �� which is equivalent to �. Hence
all ABox individuals are retrieved. Choosing one of the retrieved individuals, in our
case id1289instance, we find it to be an instance of ResearchPaper and (since in our
example,we chose the option to give the expert the opportunity to enhance the coun-
terexample specification) add the information that it is an instance of SubCoW.

In a similar way, the next hypothesis posed – � � ResearchPaper � SubCoW – is
handled. Clearly, not every ABox individual is a research paper witnessed by the coun-
terexample id1303instance being a journal article and hence neither a research paper
(according to the underlying ontology) nor submitted to a conference or workshop.

However, the subsequent hypothesis CoW � � can neither be proved nor disproved
by KAON2 using the information actually present in the ontology – since it does not
contain any individuals being a conference or workshop. Therefore, the human expert
will be asked for the final decision. Obviously, this hypothesis has to be denied and

Fig. 3. Dialog for displaying the hypothetical axiom CoW � SubCoW � �
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Fig. 4. Specifying a counterexample. Every (non-)class-membership deducible from the knowl-
edge base is automatically entered leaving just the open questions to the expert. RELExO can be
configured to automatically display the web page associated with an individual’s URI.

a counterexample for it is just any conference, so we enter ICFCA_2008 and specify
it as instance of Conference.17 Note that due to the capability of dealing with partial
information, the expert may leave open whether this individual belongs to the other
considered classes. However, we employ the reasoner in order to determine all class-
memberships deducible from the present information. In our case, it can be inferred that
ICFCA_2008 is also an instance of CoW and definitely no instance of ResearchPaper.

Consequently, the next question CoW � Conference comes up and has to be denied
as well by entering the workshop instance OntoLex_2007.

Equally, the hypothesis SubCoW � ResearchPaper cannot be decided based on the
present knowledge and is thus passed to the expert. In fact, this is the first “design
decision” to make depending on the intended scope of the ontology. A look into the
SWRC taxonomy reveals that there is a class Poster to denote posters presented at
conferences. Indeed, any submitted poster would be a counterexample for the presented
hypothesis, so we add iMapping_Poster_SWUI_2006 to the knowledge base.

The next hypothesis brought up is CoW �SubCoW � � being an integrity constraint
saying that nothing being a conference or workshop can be submitted (to a conference
or workshop). Figure 3 shows how it is presented to the user. Here, we encounter an-
other design decision. Although it might be reasonable to say that a workshop (actually:
a workshop proposal) has been submitted to a conference, we stick to the intended se-
mantics of the term Workshop as a kind of event which cannot be submitted and hence
confirm the validity of the presented hypothesis.

The hypothesis Person � �, coming up next, is refuted by the reasoner retrieving
an individual who is a PhD student at the institute AIFB. Figure 4 shows the dialog
wherein the user is presented the stored information about this individual and is asked
to add the missing facts.

17 This information already qualifies ICFCA_2008 as a counterexample for the presented hypoth-
esis. RELExO checks for every alleged counterexample whether it is indeed a such and rejects
the input otherwise.
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In this way, the exploration continues. During the process, some individuals are
added and the following new axioms are confirmed:

– SubCoW � Person � � (a person cannot be submitted)
– ResearchPaper � SubCoW (every research paper has been submitted to a conference

or workshop)18

– RevPSubCoW � Person (everybody reviewing a submitted paper is a person)
– Person � PhDStudent � Undergraduate � � (PhD students are disjoint with under-

graduates)19

– RevPSubCoW � Undergraduate � Person � � (actually a “policy decision”: under-
graduates are not allowed to review papers)

Fig. 5. Partial formal context resulting
from the exploration

The formal context with the examples ac-
quired during the exploration is displayed by
Figure 5. It is automatically exported to the na-
tive ConExp20 format and stored as a ��� file.

We end up with a refined SWRC ontology
containing the new class Reviewer fully inte-
grated into the existing ontology. Any subsump-
tion between conjunctions of the specified inter-
esting classes can be directly decided based on
this refined SWRC ontology. This can be nicely
demonstrated by starting RELExO again with
the refined ontology: it terminates without ever
asking the human expert for a decision, showing
that all upcoming questions can be answered by
the reasoner alone.

7 Conclusion and Outlook

In this paper, we have sketched a way to com-
bine complementary approaches to ontological
knowledge acquisition: the more intensional ap-
proach of distilling conceptual information from
textual resources, and the extensional method
of extracting hypothetical domain axioms based
on given entities. We have instantiated this ap-
proach by designing and implementing a frame-
work that integrates the LExO ontology learn-

ing application, a Relational Exploration component, and the KAON2 reasoner. To
the best of our knowledge, RELExO is the first publicly available implementation of
an exploration-based ontology refinement approach. It is open source and supports
the standard ontology language OWL. In an example using the well-known SWRC

18 We regard this justified by the existence of a class Unpublished disjoint to ResearchPaper.
19 Another modeling flaw: this axiom should have been present in SWRC.
20 http:��conexp.sourceforge.net
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ontology we have demonstrated the feasibility of our approach, and its applicability to
real-world ontology engineering tasks.

Altogether, we are confident that the proposed framework will considerably alleviate
the task of designing comprehensive and complex, yet logically consistent ontologies
for knowledge-intensive applications. The number of design decisions to be made by
the human user is minimized by the usage of textual resources and the employment of
a reasoning back-end. Relational exploration provides guidance, ensuring that neither
redundant information will be asked for nor important information is simply forgotten
in the modeling process, and supports on-the-fly ontology evaluation: as in our ex-
ample (where we were well-nigh inevitably confronted with design flaws in the used
ontology), present modeling errors in the ontology are often indicated by “surprising”
or counterintuitive questions asked by the algorithm. Hence from the methodological
point of view, a cyclic ontology engineering process with intertwined exploration and
manual refinement (or debugging) phases seems a promising strategy.

After all, human intervention will always remain indispensable, especially for com-
plex knowledge modeling tasks. Notwithstanding, the workload to ontology engineers
and domain experts can be drastically decreased by intelligently integrated components
for semi-automatic ontology engineering. By facilitating the acquisition of expressive
OWL ontologies, we hope to foster the development of more sophisticated, reasoning-
based applications, and help to put semantic technologies into practice.

Pursuing this promising goal, we identify several central issues for future research.
Firstly, we are planning to incorporate the just recently proposed technique of role ex-
ploration from [25]. In order to achieve an even tighter lexico-logical integration, the
implementation of RELExO could be further extended by an additional (automatic)
expert which uses ontology learning techniques, and online resources for confirming
hypotheses, or suggesting counterexamples. Additional ontology learning components
could be used to complement the LExO-generated axiomatizations by other modeling
primitives (e.g. disjointness axioms), or to sort the attributes, i.e. class descriptions, with
respect to the current domain or the user’s interests. Finally, we will integrate RELExO
into an ontology engineering environment such as the NeOn Toolkit21, and improve its
usability by adding a natural language generation component for translating hypotheses,
i.e. logical implications, into natural language questions. In the end, we are confident
that further extensive evaluations in real world application scenarios will demonstrate
the advantages of our combined, lexico-logical approach.
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Abstract. The paper presents a new border algorithm for making the
covering relation of concepts explicit for iceberg concept lattices. The
border algorithm requires no information from the formal context rely-
ing only on the formal concept set in order to explicitly state the cover-
ing relation between formal concepts. Empirical testing is performed to
compare the border algorithm with a traditional algorithm based on the
Covering Edges algorithm from Concept Data Analysis [4].

1 Introduction

The process of obtaining a concept lattice from a formal context can be seen
as two distinct sub-tasks: finding the set of all formal concepts and making the
covering relation of the formal concepts explicit. From a strictly mathematical
perspective the second step may seem superfluous as the set of all formal concepts
uniquely defines the covering relation as well [5]. However, from a performance
perspective explicitly recording the covering relation given only the set of all
formal concepts is a computationally intensive task [4].

An iceberg concept lattice is a concept lattice where concepts which have
fewer formal objects than a given desired minimum threshold are omitted. The
omitted formal concepts are usually from the lower portion of the concept lattice.

Where an iceberg concept lattice is acceptable while performing Formal Con-
cept Analysis there are many algorithms from Data Mining which can relatively
efficiently find the set of all formal concepts. This leaves the step of explicitly
recording the covering relation for the formal concepts to be computed.

This paper presents a Border algorithm to perform this latter task. The border
algorithm does not require any information from the formal context, relying
solely on the set of formal concepts to make the covering relation explicit. Thus,
the efficiency of the border algorithm is independent of the number of formal
objects.

The research was motivated by applying Formal Concept Analysis to formal
contexts which contain millions of formal objects where an iceberg concept lattice
with up to a few thousand formal concepts might be desired.

For brevity, this paper will also refer to formal concepts, formal attribute and
formal objects simply as concepts, attributes and objects respectively.
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2 Data Mining and Formal Concept Analysis

Stumme et al [16] presented both the Titanic algorithm and highlighted the link
between finding the lattice closure in FCA and the problem of locating Closed
Frequent Itemsets (CFI) in Data Mining [8]. The Titanic algorithm is based on
the Apriori Data Mining algorithm [2].

This paragraph establishes the link between CFI in Data Mining and finding
the set of concepts (intents) from a formal context in FCA. The set of concept
intents uniquely determines the set of concepts. An itemset in Data Mining is
a set of formal attributes in the formal context. The support of an itemset is
the number of objects that have at least that itemset in their row in the formal
context.

In Formal Concept Analysis a formal context is a triple (O, A, I) where
O is a set of objects, A is a set of attributes, and I is a binary relation
between the objects and the attributes, i.e. I ⊆ O × A. A formal con-
cept of a formal context (O, A, I) is a pair (X, Y ) where X ⊆ O, Y ⊆ A,
X = {o ∈ O | ∀m ∈ Y : (o, a) ∈ I} and Y = {a ∈ A | ∀o ∈ X : (o, a) ∈ I}.

Expressing Data Mining in Formal Concept Analysis terms, an Itemset would
be a set Y ⊆ A where Y ′′ might not equal Y .

The “Frequent” part of the Closed Frequent Itemset relates to a cut off thresh-
old in the Data Mining process. The support of an Itemset Y is |Y ′|. For a given
minimum support value z, any itemset with a higher support than the minimum
is considered frequent, ie. |Y ′| > z.

A closed itemset is an itemset Y ⊆ A for which there exists no attribute
y ∈ A\Y such that the itemset Y ∪{y} has the same support as Y . That is, any
itemset is closed if it can not be expanded to contain any other attribute and
not have a lesser support.

Thus, the itemset Y ⊆ A can be considered closed if and only if Y = Y ′′.
Note that if Y �= Y ′′ then there must be some y ∈ A\Y which is in Y ′′.

Thus, a CFI has a support above the minimal threshold and cannot be ex-
panded to contain any other attribute without modifying its support. That is, a
Closed Frequent Itemset (CFI) Y ⊆ A has Y = Y ′′ and |Y ′| > z.

Much computational complexity can be avoided if the minimum support is set
slightly higher than zero [6]. For example, by using a minimum support in the
range of 2% to 5% the algorithm might perform 100 to 1,000 faster than when
using a minimum support of zero. At some point before reaching a minimum
support of zero many of the algorithms will become intractable [6].

Finding the set of all intents in FCA is equivalent to finding the set of all
Closed Frequent Itemsets (CFI) in Data Mining using a minimum support of
zero. When the minimum support is above zero the side effect is that some
concepts at the bottom of the concept lattice are not discovered. Such partial
concept lattices are called iceberg lattices [16].

Algorithms for finding closed frequent itemsets in the Data Mining community
are the subject of much research and recently an annual workshop to benchmark
both algorithms and their implementations was held [6].
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The set of CFI for a given dataset implicitly contains the (iceberg) concept
lattice for that dataset. In order to display such a concept lattice one must make
explicit the covering relation of the CFI. Titanic explicitly records this cover-
ing relation while discovering the CFI whereas many Data Mining algorithms
normally stop after finding just the CFI themselves.

The process of obtaining a concept lattice using Data Mining algorithms
can be seen as two distinct subtasks: finding the CFI and finding the cover-
ing relation of the CFI. For further details of the first step, Data Mining CFI,
see [6,12,13,17,9,14,7]. The focus of this paper is on making the covering rela-
tion explicit after the CFI have been found. This is discussed in Section 4 with
empirical testing in Section 6.

3 A Baseline Algorithm

The algorithm “CoveringEdges” from Concept Data Analysis [4] will be used as
a baseline implementation for empirical testing.

The Covering Edges [4] algorithm was implemented with a minor change to
work against iceberg lattices as shown in Fig.1. The algorithm from Fig.1 will
be referred to as the “covering edges” in the following discussion.

1. IceBergCoveringEdges( C, ( G, M, I ) )
2. for each( X, Y ) ∈ C
3. Set count of any concept in C to 0
4. for each m ∈ M \ Y

(a) inters := X ∩ {m}’
(b) Find ( X1, Y1 ) ∈ C such that X1 = inters
(c) if( ( X1, Y1 ) exists ) then

i. count( X1, Y1 ) := count( X1, Y1 ) + 1
ii. if( |Y1| - |Y| ) = count( X1, Y1) then

A. Add edge ( X1, Y1 ) → ( X, Y ) to E

Fig. 1. Modified CoveringEdges using the same syntax as in Concept Data Analysis [4].
As the iceberg lattice does not contain all concepts, the modified version must check
that the concept (X1, Y1) exists before proceeding.

4 A Border Algorithm

In the following discussion C will represent the set of all concepts. A naive algo-
rithm for finding the covering relation among concepts would inspect each concept
as a potential parent for every concept. The time complexity to find the parent-
child relations between the concepts for this algorithm is proportional to |C|2.

Various order theoretic properties of a concept lattice can be used to reduce
the search space for covers and thus handle a larger |C|. The following border
algorithm maintains a border set B as the concept lattice is inspected in a top
down manner. If the mean size of B is y the complexity becomes proportional
to y × |C|.
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The border algorithm is shown in Fig.2. The algorithm only requires the
set of all intents F as input. The algorithm requires that the intent set be a
partial order of least intent attribute cardinality to maximum intent attribute
cardinality. For example, all intents with only one attribute will be sorted before
all intents with two or more attributes. As each intent will uniquely define a
concept the discussion will also simply mention “the concept” for a ∈ F instead
of the concept with the intent {a}.

There may be many concepts D ⊆ F sharing the smallest intent cardinality.
Any intent of D may be the intent of the top concept of the lattice. As such
a new intent is created t which will act as the intent of the top concept of the
lattice. After the algorithm has completed, if t has only a single child then it can
be removed from the lattice. This allows the algorithm to quickly know what
concept is the top concept of the concept lattice. The top concept is used to
initialize the border set with so it must be known.

The algorithm works by starting with a border of the top lattice node and
sequentially working through concepts in the ordered intent set a ∈ F and
forming the intersection with each intent in the border set to find parents of
a. After each concept is checked against the border set any new parent-child
relations are explicitly linked and the border set is updated.

The algorithm in Fig.2 will be referred to as the “intents only” algorithm in
the following.

5 Application Example

The concept lattice shown in Figure 5 is used to present an example of the
application of the border algorithm.

The steps that the border algorithm performs to find the concept lattice are
shown in Figure 4. The current concept that is being worked on, the current
border set as well as the Intents set from line 12 in Figure 2 before and after
Maxima is called on it. All edge additions are shown at the time when they are
performed on line 14 of Figure 2.

6 Performance Analysis

The hardware and software setup is described to a level of detail that should
allow third parties to obtain similar empirical test results. In particular the way
in which bitsets are implemented can have a huge impact on performance so cer-
tain low level details must be presented in the interests of reproducibility. The
benchmark system is a dual core AMD X2 running at 2.2GHz with 2Gb of RAM
at DDR400. The implementation is single threaded and single processed so only
takes advantage of a single CPU core. The implementations use the PostgreSQL
database to read the CFI. Testing was performed on a synthetic formal context
generated with the IBM synthetic data generator [15] databases from the UCI
dataset [3] and two filesystem examples. The filesystem examples include a for-
mal context derived from the metadata of 67,000 document files [1] and 2,000
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1. IntentsOnly( F )
2.
3. set t := {}
4. F := F ∪ {t}
5. Border := {t}
6.
7. for each a ∈ F
8. Intents := {}
9. for each b ∈ Border

10. y := b ∩ a
11. Intents := Intents ∪ {y}
12. Intents := Maxima( Intents )
13. for each y ∈ Intents
14. Add edge y → a to E
15. Border := Border \ {y}
16. Border := Border ∪ {a}
17.
18. if |children(t)| = 1
19. for each c ∈ children(t)
20. Remove edge t → c from E
21. F := F\{t}

Fig. 2. Algorithm to make the order relation between concepts explicit. Input: F
the set of concept intents partially ordered on the cardinality of the Intent size from
smallest intent size to largest. Output: E an edge mapping from parent concept intent
to child concept intent forming the covers for the concept lattice of F . The Intents set
introduced on line 8 is also partially ordered from intents with the smallest cardinality
to intents with the largest cardinality.

1. Maxima( Intents )
2.
3. Ret := {}
4. for each y ∈ reverse(Intents)
5. ismin := 1
6. for each r ∈ Ret
7. if {y} ∩ {r} = {r}
8. ismin := 0
9. if ismin

10. Ret := Ret∪{y}
11.
12. return Ret

Fig. 3. The Maxima function returns the set of intents which are maximal from the
given set of intents. The Intents set used as input is ordered from smallest intent
cardinality to largest intent cardinality. Line 4 indicates that the ordered Intents poset
is to be inspected in reverse order, from largest intent cardinality to smallest.
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1. Current Concept = {{a}}
Border = {{}}
Intents = {{}}
Maxima(Intents) = {{}}
Add edge {} → {a}

2. Current Concept = {{c}}
Border = {{a}}
Intents = {{}}
Maxima(Intents) = {{}}
Add edge {} → {c}

3. Current Concept = {{d}}
Border = {{c}, {a}}
Intents = {{}, {}}
Maxima(Intents) = {{}}
Add edge {} → {d}

4. Current Concept = {{b}}
Border = {{d}, {c}, {a}}
Intents = {{}, {}, {}}
Maxima(Intents) = {{}}
Add edge {} → {b}

5. Current Concept = {{ae}}
Border = {{b}, {d}, {c}, {a}}
Intents = {{a}, {}, {}, {}}
Maxima(Intents) = {{a}}
Add edge {a} → {ae}

6. Current Concept = {{ac}}
Border = {{ae}, {b}, {d}, {c}}
Intents = {{c}, {a}, {}, {}}
Maxima(Intents) = {{a}, {c}}
Add edge {c} → {ac}
Add edge {a} → {ac}

7. Current Concept = {{ad}}
Border = {{ac}, {ae}, {b}, {d}}
Intents = {{d}, {a}, {a}, {}}
Maxima(Intents) = {{a}, {d}}
Add edge {d} → {ad}
Add edge {a} → {ad}

8. Current Concept = {{bc}}
Border = {{ad}, {ac}, {ae}, {b}}
Intents = {{b}, {c}, {}, {}}
Maxima(Intents) = {{c}, {b}}
Add edge {b} → {bc}
Add edge {c} → {bc}

9. Current Concept = {{bd}}
Border = {{bc}, {ad}, {ac}, {ae}}
Intents = {{d}, {b}, {}, {}}
Maxima(Intents) = {{b}, {d}}
Add edge {d} → {bd}
Add edge {b} → {bd}

10. Current Concept = {{bcd}}
Border = {{bd}, {bc}, {ad}, {ac}, {ae}}
Intents = {{bc}, {bd}, {c}, {d}, {}}
Maxima(Intents) = {{bd}, {bc}}
Add edge {bc} → {bcd}
Add edge {bd} → {bcd}

11. Current Concept = {{abcde}}
Border = {{ad}, {ac}, {ae}, {}, {bcd}}
Intents = {{bcd}, {ae}, {ac}, {ad}, {}}
Maxima(Intents) = {{bcd}, {ad}, {ac},

{ae}}
Add edge {ae} → {abcde}
Add edge {ac} → {abcde}
Add edge {ad} → {abcde}
Add edge {bcd} → {abcde}

Fig. 4. Steps performed by the border algorithm to find the covers of the concept
lattice shown in Figure 5

geospatially tagged digital pictures. The digital picture context contains over 90
formal attributes.

Tests were run multiple times and the result of the final run was taken. This
reduces the impact of the relational database, disk speed and other non-relevant
implementation details because most information will be coming directly from
RAM cache in the relational database itself. This “hot caching” is acceptable as
we are mostly interested in the speed of the core algorithm which makes explicit
the covering relations of the CFI. The core of the implementation was compiled
with gcc 4.1.1 using the -O4 flag to turn on code optimization.
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Fig. 5. Concept lattice used as example of border algorithm application

In order not to advantage either algorithm in empirical testing variants were
created of each. As the intents only algorithm makes use of many temporary
small sized bit sets it was implemented around boost::dynamic_bitset<> bit
container.

As the covering edges algorithm makes extensive use of intersecting very large
sets, see line 4a from Figure 1, the covering edges uses the BitMagic bitset
implementation that makes use of gap encoding and Single Instruction Multiple
Data (SIMD) execution. These two optimizations greatly reduce the execution
time for covering edges on large data sets.

The use of SIMD carries a setup overhead and as such can actually be a
disadvantage for smaller bit-sets. The choice of bit-set implementation being
advantageous for each algorithm was tested by using both bit set implementa-
tions to verify empirically that the choice was optimal. For sets with 64 or less
elements an implementation of intents only was created using a single 64 bit in-
teger instead of a boost::dynamic_bitset<>. For covering edges a version that
operates on the row reduced context was created. This implementation will be
referred to as covering edges reduced.

There should be somewhat more efficient ways to perform the covering edges
“set up” that is shown in the following. Regardless of potential improvements
this set up time can not be avoided and the relative differences in speed shown
remain.

6.1 Performance on Synthetic Data

The following use synthetic data generated with the IBM synthetic data gen-
erator [15]. Parameters include the number of transactions (ntrans), the trans-
action length (tlen), length of each pattern (patlen), number of patterns (npat)
and number of items (nitems). The parameters were as follows ntrans=10,000,
ntrans=100,000 and ntrans=1,000,000, nitems=1000, patlen=7, npats=10000.
For each ntrans value, the tlen was varied between 32, 128 and 256. Some com-
binations of tlen and ntrans could not be generated because the implementation
ran into RAM shortages.
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The output of the IBM synthetic data generator is a list of ntrans transactions.
Each transaction contains a number of items. Each item is represented by a
unique integer in the range {1, ..., nitems}. Transactions were imported into a
bit field column type in a PostgreSQL table for n ∈ {32, 128, 256}. An expression
index was then created on the corresponding int array for the bit field column
by using a conversion function to generate an int array from a bit field. Such an
arrangement allows an RD-Tree to easily be created on the int array using the
same implementation previous work [10,11]. The base data type being a bit field
allows the fastest possible bulk transfers of data.

The Apriori [2] algorithm was used to generate the CFI for each dataset.
Parameters for support were varied in order to obtain a desired number of CFI
for each data set. The target CFI count was 1,000, 3,000 and 10,000. Results
were not recorded for datasets that do not support the target number of CFI.

Shown in Table 1 is the number of CFI for each input data set along with the
size of the row reduced formal context. The results of running the two algorithms
against the datasets in Table 1 are shown in Table 2. Where the number of CFI
is less than 3,000 the intents only method has a clear advantage. However, once
the number of CFI is at 10,000 the covering edges based algorithms perform
much better. The border algorithm functions very poorly on the 10,000 CFI
input because the average number of concepts in the border set is very high, as
shown in Table 3. As the border algorithm, shown in Fig. 2, visits each member
of the border set for each concept having the average border size almost half
the number of concepts makes the overall complexity of the border algorithm
unacceptable.

Table 1. The number of CFI for each configuration. The reduced count is the number
of transactions in an object row reduced formal context. The reduced count plays a
role in the Covering Edges implementation. As can be seen the reduction process has
no bearing for formal contexts with tlen > 32. Where the data does not support the
requested number of CFI the table has blank cells.

ntrans tlen |CFI | |CFI | |CFI | row reduced object count
(x1000) 1,000 3,000 10,000 (x1000)

1.0 128 931 2867 9989 1.0

10.0 32 1118 . . 1.0
10.0 128 991 2983 9885 10.0
10.0 256 1155 3009 9767 10.0

100.0 32 906 2909 . 3.8
100.0 128 955 2880 9494 100.0

6.2 Performance on a Filesystem Data

Personal Photo Collection. The first dataset is for 2,000 photographs with
metadata describing their location both semantically and quantitatively. Seman-
tic metadata is captured by associating place names with each file. Quantitative
metadata comes from both the metadata automatically recorded by a digital
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Table 2. Time taken by various algorithm implementations to make the covering
relations between CFI explicit

ntrans tlen |CFI | algorithm covers time {m}′ time setup X
(x1000) (mm:ss.d) (mm:ss.d) (mm:ss.d)

1 128 931 intents only 2.5
covering edges 4.5 0.02 1.1

2867 intents only 13.4
covering edges 8.2 0.02 3.5

9989 intents only 3:22.3
covering edges 30.6 0.02 12.3

10 32 1118 intents only 1.2
covering edges 1.4 0.01 0.8

128 991 intents only 1.7
covering edges 2.6 0.2 7.0

2983 intents only 15.9
covering edges 8.3 0.2 18.1

9885 intents only 3:24.2
covering edges 28.9 0.2 57.7

256 1155 intents only 2.6
covering edges 7.1 0.4 12.5

3009 intents only 16.0
covering edges 19.1 0.4 31.0

9767 intents only 3:20.1
covering edges 1:21.2 0.4 33.8

100 32 906 intents only 0.9
covering edges 1.4 0.9 2.8

covering edges R 0.8 0.04 1.1
2909 intents only 10.4

covering edges 5.6 0.9 6.2
covering edges R 3.1 0.04 3.2

128 955 intents only 1.6
covering edges 3.2 2.0 57.3

2880 intents only 15.3
covering edges 10.5 2.0 41.5

9494 intents only 3:12.8
covering edges 34.6 2.1 30.6

camera or film processing machine and also indirectly from the place name tags
in the form of longitude and latitude information.

Using the border algorithm takes 0.03 seconds whereas the covering edges re-
quires 0.49 seconds plus 0.2 seconds to set up data structures. Note that although
this data was only for 2,000 images, since the border algorithm is dependent only
on the CFI, this advantage would only increase proportionally with the number
of images in the collection.

Two scales on 200,000 files. The term “index” can be refer to a specific im-
plementation such as a B-Tree and also to the database as a whole. As such
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Table 3. Average border size for various CFI data sets

ntrans tlen |CFI | average border size
(x1000)

10 256 3009 956
9767 3399

100 32 906 331
2909 1004

128 955 432
2880 1162
9494 3991

the term findex is used to refer to the database as a whole which might be
comprised of many database level B-Tree or spatial indices.

An findexwas created on a Fedora Core 4 Linux machine using libferris 1.1.54
of 201,759 files in /usr/share/. For this findex a nominal scale was created on
mimetype and a data driven scale on file modification time. A total of 141 formal
attributes was created with these two scales.

With these two scales, the support was set to give two datasets with 955 and
5463 concepts. For the 955 concepts the intents only algorithm took 1.6 seconds
whereas the covering edges required 7.5 seconds plus 14.8 seconds of setup time.
For the larger set of 5463 concepts the intent only algorithm needed 1:07 whereas
the covering edges completed with 42.5 and 25.5 seconds of setup time.

6.3 Performance on UCI Covtype Dataset

This section examines the implementations in the setting of the application of
Formal Concept Analysis on a large data source. This selected application is
particularly difficult due to it having 64 formal attributes as well as each formal
object having a relatively large number of attributes.

The UCI covtype database consists of 581,012 tuples (formal objects) with 54
columns of data (many-valued attributes). Two ordinal columns were used: the
aspect and elevation. Formal attributes were created using 32 formal attributes
per ordinal scale. An example formal attribute would be created from a predicate
like “elevation < 3144”.

Table 4. Performance of intents only and covering edges algorithms on CFI drawn
from 100,000 objects with 64 attributes

|CFI | Average Intents Covering Covering
border only edges edges

size core set-up
(seconds) (seconds) (minutes : seconds)

1,000 522 1.8 1.7 4:08
3,000 1376 13.5 4.8 10:42

/usr/share/
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A sub-sample with only 100,000 tuples was created for testing. A support
cut-off was selected to generate datasets with roughly 1,000 and 3,000 CFI. The
results are shown in Table 4. It can be seen that the intents only algorithm
suffers when the number of CFI increases. The intents only algorithm does not
require to touch the base table in order to find X for all CFI which presents
a significant set-up cost for the covering edges algorithm on such a large input
dataset.

7 Conclusion

The border algorithm can suffer poor performance as the mean border set size
grows. Some testing has revealed border set averages in the order of half the
concept set size.

This border set issue does not significantly impact the border algorithm where
the size of the CFI set is small (< 1, 000)). The use of the border algorithm is
generally advantageous when the number of concepts in the CFI is relatively
small (< 3, 000)).

The efficiency of the border algorithm is independent of the number of formal
objects. Only the CFI are required for the border algorithm.

For the covering edges algorithm, as the number of formal objects increases
the burden of inspecting the whole database during algorithm setup increases.
The setup for the covering edges algorithm includes finding the extent of each
concept and the attribute extent for every attribute in preparation for step 4a
of Fig. 1.

For a large formal context where formal objects have few attributes and the
set of all formal attributes A is relatively large the covering edges algorithm
can be very slow. This is because step 4a of Fig. 1 will be executed on average
|C| ∗ |A| times each involving a |O| length bit intersection operation.
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Abstract. Armstrong and symmetric dependencies are two of the main groups
of dependencies in the relational database model, both of them having their own
set of axioms. The closure of a set of dependencies is the largest set of dependen-
cies that can be calculated by the recursive application of those axioms. There are
two problems related to a closure: its calculation and its characterization. Formal
concept analysis has dealt with those problems in the case of Armstrong depen-
dencies (that is, functional dependencies and alike).

In this paper, we present a formal context for symmetric dependencies that
calculates the closure and the lattice characterization of a set of symmetric de-
pendencies.

1 Introduction

Dependencies are restrictions that apply over a set of data (we assume that, generally
speaking, a set of data is a set of fixed length tuples or records that have a common set
of attributes). They usually indicate a relationship between sets of attributes that exist
in that set of data, and may be found in different realms, as in database theory, artificial
intelligence, propositional logic, knowledge discovery, algebra, etc ([1,5,7,8,22]).

Every type of dependency has a (semantical) definition that indicates the conditions
that must exist in the set of data for those dependencies to hold. For instance, a func-
tional dependency X

−→
fd Y , where X and Y are sets of attributes, holds in a set of data

if the values of the attributes Y can be determined by the values of the attributes X , as
Example 1 shows.

Example 1. We have the set of data R:

Name Birth Place Birth Year

P.D. James Oxford 1920
de Pedrolo M. L’Aranyó 1918
Bukowski C. Berlin 1920

Durrell L. Jalandhar 1912
Gombrowicz W. Małoszyce 1904

Plenzdorf U. Berlin 1934

R. Medina and S. Obiedkov (Eds.): ICFCA 2008, LNAI 4933, pp. 90–105, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



A Formal Context for Symmetric Dependencies 91

The columns are identified with the attribute names Name, Birth Place, Birth Year
and each row represents a record or a tuple. In this case, we have that, given Name,
we can deduce Birth Place and Birth Year. For instance, if we are given C. Bukowski,
we know that the birth place and birth year are Berlin and 1920. But given Birth Year,
we cannot deduce Name, since if we are given the year 1920, the author’s name can be
P.D. James or C. Bukowski. Neither do we have that Birth Place determines Name, since
if we are given Berlin, the author’s name may be either C. Bukowski or U. Plenzdorf.
Therefore, we have that in this set of data, the functional dependency {Name} −→

fd

{Birth Place,Birth Year} holds, but that {Birth Place} −→
fd {Name} and {Birth Year}

−→
fd {Name} do not hold.

For each set of dependencies Σ we take all sets of data (a possibly infinite number of
them) in which all the dependencies in Σ hold: R1, R2, . . . . Apart from all the depen-
dencies in Σ, there may be some other dependencies not in Σ that may hold in all Ri

as well. These dependencies, together with those in Σ are called the closure of Σ, and
are represented as Σ+.

The calculation of Σ+ is closely related to the implication problem (also known
as, membership problem), that consists in, given a set of dependencies Σ and a single
dependency σ, determine if σ holds in all set of data in which all dependencies in
Σ hold, or, said otherwise, if σ is a logical consequence of Σ ([5]). Obviously, σ is
a logical consequence of Σ if and only if σ ∈ Σ+. The calculation of Σ+ can be
performed by computing all possible sets of data Ri in which Σ hold, which is rather
unfeasible since there may be an infinite number of them. Instead, we can use one set
of complete and sound axioms of that type of dependency, if they exist. The axioms are
a (finite) set of rules that state that a dependency holds if some conditions apply. As
long as the set of dependencies Σ is finite, the axioms for those dependencies provide
a finite way to calculate Σ+.

Some important remarks concerning the comparison between the axioms for a set of
dependencies compared with the definition of those same dependencies must be con-
sidered. It has been said that each type of dependency has, obviously, a semantical
definition that states the conditions that must exist in a set of data for that particular
dependency to hold. Unlikely the definition of a dependency, the axioms for a type of
dependency are syntax-based, that is, they state what dependencies hold in a set of data
if some other conditions, that do not depend on the set of data, exist. Therefore, the
semantical definition is particular to each kind of dependency, whereas the axioms may
be shared with some other dependencies. This induces a classification of dependencies
according to their axioms. In database theory, there are two main of such groups: Arm-
strong and symmetric dependencies [8]. Functional dependencies belong to the former
group, and multivalued dependencies belong to the latter, and both are well-known in
the relational database model ([13]), since they are used to determine important facts
on sets of data, as, for instance, if they are in some normal forms [23]. Therefore, their
importance in this discipline is capital. Functional dependencies are also present in
knowledge discovery [21,22].

Two important problems are important for any set of dependencies Σ: the charac-
terization and the calculation of Σ+. In this paper we focus on lattices, which describe
one of these possible characterizations. Formal Concept Analysis has dealt with (a) the
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calculation and (b) the characterization of closures of Armstrong dependencies. Con-
cerning (a), it is performed in [18] (Proposition 20) with a formal context such that the
application of the Galois connection yields the closure of that set of dependencies, that
is: Σ′′ = Σ+ (the set of attributes of this formal context is the set of all Armstrong
dependencies that can be formed with a given set of attributes). Concerning (b), it has
been studied in terms of a lattice in [18] and in [2] for Armstrong dependencies, and
in [3,4] for further dependencies. This characterization was rather semantics-based and
was based on a set of data. Aa lattice syntax-based characterization of Σ+ is presented
in [11].

Thus, a formal context for Armstrong dependencies provides a convenient way (a)
to calculate the closure of a set of dependencies and (b) to characterize this closure.
Therefore, a formal context with the same properties for other well-know dependencies
may also be of interest for similar reasons. In this paper, we present a formal context,
similar in nature to that for Armstrong dependencies, that calculates the closure of a set
of symmetric dependencies and also its characterization in terms of a lattice.

2 Notation

We follow the notation in [18] for formal concept analysis. We define U ={ a1, . . . , an }
as a set of attributes. Letters X, Y, Z, . . . are used to denote sets of attributes. For a set
X ⊆ U , we represent by (X)C its complement wrt U . Part(U) denotes the set of
all possible partitions of U . The notation of a partition P ∈ Part(U) in classes is as
follows: P = [P1 | · · · | Pn], where each Pi ⊆ U is a class. For all P, Q ∈ Part(U),
we say that P � Q if and only if each class in Q is contained in some class of P .
The relation � is a partial order and 〈Part(U); �〉 is a complete lattice ([17]). The
reader can refer to [17] for more information on the lattice of the partitions of a set;
for reasons that will be clear later on, the order in this paper is the dual of the order
found in current literature. The bottom element is the partition [U ], and the top element
is a partition where all the classes are singletons: [a1 | · · · | an]. In this paper, the
set notation for classes in a partition is dropped. Hence, if U = { a, b, c, d }, instead
of [{ a, b } | { c } | { d }] we use [ab | c | d]. We use the notation X in a partition,
to denote that all the attributes in X are singletons in that partition. For instance, the
partition [ab | cd] stands for [a | b | cd]. As it will be seen in Section 4, the definition of
partitions of sets is closely related to the syntactical nature of symmetric dependencies,
since partitions are the algebraic object used to describe a dependency basis.

Definition 1. Let V be a lattice. For a set V ⊆ V , the closure under meet of V is
denoted as [V ]∧.

If the set [V ]∧ has a top element, then, by Theorem 2.31 in [12], [V ]∧ is a complete lat-
tice, since the closure under possibly infinite meets is always well defined. We say that
[V ]∧ is a closure system. We use the notation M(V) for the set of meet-irreducible
elements of the lattice V .

An Armstrong and a symmetric dependency are both a binary relation between two
sets of attributes, and the notation is X

−→
ad Y for the former, and X

−→
sd Y for the

latter, for X, Y ⊆ U . The closure of a set of dependencies Σ is the largest set of
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dependencies that hold in all set of data in which Σ hold, and it can be calculated
by the axioms of that type of dependency. Since these axioms are syntax-based, some
different kinds of dependencies may share the same axioms, although having different
semantical definitions. In the relational database model, there are two main groups of
dependencies: Armstrong and symmetric dependencies, each of them have their own set
of axioms. Implications and functional dependencies (FD’s) are Armstrong dependen-
cies ([23]), whereas multivalued dependencies (MVD’s), degenerated multivalued de-
pendencies (DMVD’s) and multivalued dependency-clauses (MVD-clauses), are ([8])
symmetric dependencies (SD’s).

For a given a set of attributes U , we define as ADU and SDU the set of all Armstrong
dependencies and the set of all symmetric dependencies respectively that can be formed
with U . By all possible closures of a set of symmetric dependencies, we mean the
following set:

{ Σ+ | Σ ⊆ SDU }
that is, the set of all closures for all sets of dependencies that can be formed from a
given set of attributes (for Armstrong dependencies, the definition is analogous, with
ADU instead of SDU ).

3 Formal Context for Armstrong Dependencies

This section presents some known results mainly from [18], that characterize and cal-
culate the closure of a set of Armstrong dependencies. These dependencies have the
following axioms:

1. Reflexivity: If Y ⊆ X , then, X
−→

ad Y holds.
2. Augmentation: If X

−→
ad Y holds, then, X ∪ Z

−→
ad Y ∪ Z holds, where Z ⊆ U .

3. Transitivity: If X
−→

ad Y and Y
−→

ad Z hold, then, X
−→

ad Z holds

As it can be seen, these axioms state the presence of an Armstrong dependency
given some conditions that do not depend directly on any set of data. The calcula-
tion and characterization of Σ+ is based on the following formal context: KAD(U) =
(℘(U), ADU , ⊕), where the binary relation ⊕ ⊆ ℘(U) × ADU is:

Definition 2. Let X, Y, W ⊆ U . We say that W respects an Armstrong dependency
X

−→
ad Y (and the notation is W ⊕ (X −→

ad Y )) if and only if:

W � X or W ⊇ Y

In the context KAD(U) = (℘(U), ADU , ⊕), an attribute is an Armstrong dependency,
and an object is a subset of U . It may be remarked that in this case, we are dealing on
the one hand with a set U of the attributes that are present in a hypothetical set of data,
and, on the other hand, the set of attributes of the formal context which, in this case, is
ADU . We also note that this formal context is only valid for a fixed set of attributes U ,
since both ADU and ℘(U) depend on U .

The first result concerns the calculation of the closure of all possible sets of Arm-
strong dependencies, and states that Σ′′ = Σ+ [18] (Proposition 20). Moreover, since
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the set of attributes in this formal context is the set ADU , the implications that hold
in this formal context are between sets of Armstrong dependencies, in such a way that
an implication Σ

−→
impl Σ′′ that holds is, in fact, characterizing the closure of Σ, that is,

we have implications of the form “a set of dependencies implies its own closure (wrt
Armstrong axioms)”.

The second result concerns the lattice characterization of the closure of a set of Arm-
strong dependencies, and states that Σ′ is the lattice characterization of Σ+. This char-
acterization is given by the following function:

ΥΣ(X) =
⋂

{ Y ∈ Σ′ | Y ⊇ X }
It must be noted that ΥΣ is defined wrt Σ′, and characterizes all the Armstrong

dependencies that are in Σ+ in this way: X
−→

ad Y ∈ Σ+ if and only if ΥΣ(X) =
ΥΣ(X ∪ Y ).

This lattice characterization has been presented in [16,9,18,2,11,23] and some appli-
cations in database normalization can be found in [9].

4 Formal Context for Symmetric Dependencies

In this section we present a formal context for symmetric dependencies, similar in
essence to that presented for Armstrong dependencies in Section 3. We first explain
some peculiarities of symmetric dependencies, and then, we proceed to show our
results.

4.1 Some Remarks on Symmetric Dependencies

In order to compute the closure of a set of dependencies, and as in the case of Armstrong
dependencies, symmetric dependencies have their own set of axioms, which are the
following:

1. Reflexivity: If Y ⊆ X then, X
−→

sd Y holds.
2. Complementation: If X

−→
sd Y holds, then X

−→
sd (X ∪ Y )C holds.

3. Augmentation: If X
−→

sd Y holds and Z ⊆ W then, X ∪ W
−→

sd Y ∪ Z holds.
4. Transitivity. If X

−→
sd Y holds and Y

−→
sd W holds, then, X

−→
sd (W \ Y ) holds.

As a consequence, the following rules also apply([13]):

1. Right-hand side union: If X
−→

sd Y and X
−→

sd Z hold then, X
−→

sd Y ∪ Z holds.
2. Right-hand side intersection: If X

−→
sd Y and X

−→
sd Z hold then, X

−→
sd Y ∩ Z

holds.

It is interesting to note that symmetric dependencies follow reflexivity, augmentation
and transitivity just as Armstrong dependencies, with some slight differences. However,
complementation does not hold for Armstrong dependencies, and, in fact, it is the axiom
that from a syntactical point of view, is crucial to determine the diferences between
Armstrong and symmetric dependencies.
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This is a syntax-based definition, and, therefore, it can be applied to all different
types of symmetric dependencies. For instance, Multivalued dependencies (MVD’s),
degenerated multivalued dependencies (DMVD’s) and multivalued dependency clauses
(MVD-cl’s) are all symmetric dependencies, that is, they follow the axioms previously
defined. At the same time, they all have different semantics-based definitions [4].

In order to easy our reasonings in the rest of this paper, we present the definition
of the dependency basis with respect to a set of symmetric dependencies. Given a set
of symmetric dependencies Σ, there is a way to condense all the information we need
in order to calculate all the dependencies that are in Σ+ that have the same left-hand
side; this is the dependency basis ([13]). The dependency basis is a function such
that given a set of attributes and a set of symmetric dependencies Σ, returns all the
information about what dependencies with X in the left-hand side are in Σ+. This
information is returned as a partition of the set of the attributes. The precise definition
of the dependency basis is as follows:

Definition 3. Let X ⊆ U and let Σ be a set of symmetric dependencies. The depen-
dency basis of X in Σ, DBΣ(X) is the coarsest partition of U such that for all Y such
that X

−→
sd Y ∈ Σ+, we have that Y is a union of some classes of DBΣ(X).

Example 2. If the set of attributes is U = { a, b, c, d } and Σ = { a
−→

sd bc, a
−→

sd

d, a
−→

sd bd, a
−→

sd c, a
−→

sd bcd }, then, all the dependencies a
−→

sd X , where X ⊆ U , are
in Σ+. For instance, a

−→
sd b is in Σ+ because of the intersection of the right-hand side

of a
−→

sd bc and a
−→

sd bd. The rest of dependencies a
−→

sd X hold because of the union
of right-hand sides. Therefore:

DBΣ(a) = [a | b | c | d]

One property of the dependency basis is:

Proposition 1. X
−→

sd Y | (X ∪ Y )C ∈ Σ+ if and only if DBΣ(X) � [X | Y |
(X ∪ Y )C ].

This proposition indicates that all the possible right-hand sides that are in X
−→

sd Y |
(X ∪ Y )C must be characterized by DBΣ(X). These are Y , (X ∪ Y )C , as well as all
the attributes of X as singletons. Therefore, DBΣ(X) must at least contain classes Y ,
(X ∪ Y )C and X or coarser classes such that their union yield those sets.

The set of all the dependency bases that hold in a set of symmetric dependencies Σ
is:

DB(Σ) = { DBΣ(X) | X ∈ U }

4.2 Results

We start with the definition of the formal context for symmetric dependencies
KSD(U) = (Part(U), SDU , ⊗), where the binary relation ⊗ is:
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Definition 4. Let ⊗ be a binary relation: ⊗ ⊆ Part(U) × SDU . Let P ∈ Part(U),
X

−→
sd Y ∈ SDU and Z = U \ (X ∪ Y ). We say that the partition P marks X

−→
sd Y ,

and we represent it as P ⊗ (X −→
sd Y ), if and only if:

�Pi ∈ P : Pi ∩ Y = ∅ and Pi ∩ Z = ∅ and Pi ∩ X = ∅
This definition states basically that a partition marks a symmetric dependency X

−→
sd Y

if and only if there is no class in P that contains only attributes from (Y ∪ Z) \ X and
at least one attribute from Y \ X and one from Z . The complement of the relation ⊗ is
⊗.

As in the preceding case for Armstrong dependencies, we prove two main results in
this section that hold in the formal context KSD(U) = (Part(U), SDU , ⊗):

1. Σ′′ = Σ+ for any set of symmetric dependencies Σ ⊆ SDU .
2. Σ′ is the lattice characterization of Σ+, in terms of a closure operator (to be defined

later).

We start with the first result: Σ′′ = Σ+ for any set Σ ⊆ SDU . For each axiom, we
prove that all those dependencies that it can derive are in Σ′′.

Proposition 2 (Reflexivity). If Y ⊆ X , then, X
−→

sd Y ∈ Σ′′.

Proof. Consider a partition P ∈ Σ′ and any class Pi ∈ P . Either Pi ∩ Y = ∅ or
Pi ∩ Y = ∅, which means Pi ∩ X = ∅ because Y ⊆ X . Whatever the case, we get
P ⊗ (X −→

sd Y ) for any P ∈ Σ′, and therefore, X −→
sd Y ∈ Σ′′.

Proposition 3 (Complementation). If X
−→

sd Y ∈ Σ, then, X
−→

sd (X ∪ Y )C ∈ Σ′′.

Proof. Suppose that there is a P ∈ Σ′ such that P ⊗ (X −→
sd (X∪Y )C). Then, there is

a class in P that contains only attributes from Y \X and from (X ∪Y )C (and one from
each, at least). But in such a case, we also have that P ⊗ (X −→

sd Y ), which contradicts
the fact that P ∈ Σ′.

Proposition 4 (Augmentation). If X
−→

sd Y ∈ Σ and Z ⊆ W , then, X ∪ W
−→

sd

Y ∪ Z ∈ Σ′′.

Proof. Suppose that there is a P ∈ Σ′ such that P ⊗ (X ∪ W
−→

sd Y ∪ W ′). Then,
P has a class that contains attributes only from (Y ∪ W ′) \ (X ∪ W ) and from (Y ∪
W ′)C \ (X ∪ W ), and at least, one from each set. We have that

(Y ∪ W ′) \ (X ∪ W ) =
(Y ∪ W ′) ∩ (X)C ∩ (W )C =
(Y ∩ (X)C ∩ (W )C) ∪ (W ′ ∩ (X)C ∩ (W )C) = (since W ′ ⊆ W )
(Y ∩ (X)C ∩ (W )C) ⊆ Y \ X
We also have that
(Y ∪ W ′)C \ (X ∪ W ) =
(Y )C ∩ (W ′)C ∩ (X ∪ W )C =
(Y )C ∩ (W ′)C ∩ (X)C ∩ (W )C = (since (W )C ⊆ (W ′)C )
(Y )C ∩ (W )C ∩ (X)C ⊆ (Y )C \ X

that is: (Y ∪ W ′) \ (X ∪ W ) ⊆ Y \ X and (Y ∪ W ′)C \ (X ∪ W ) ⊆ (Y )C \ X .
In such a case, we have that P ⊗ (X −→

sd Y ), which contradicts the fact that P ∈ Σ′.
Since no such P can be in Σ′, then, X ∪ W

−→
sd Y ∪ W ′ ∈ Σ′′.
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Proposition 5 (Transitivity). If X
−→

sd Y and Y
−→

sd W ∈ Σ, then, X
−→

sd W \ Y ∈
Σ′′.

Proof. Suppose that there is a P ∈ Σ′ such that P ⊗ (X −→
sd W \ Y ). Then, P has

a class Pi ∈ P that contains attributes only from (W \ Y ) \ X = (X)C ∩ (Y )C ∩
W and from (W \ Y )C \ X = ((X)C ∩ (W )C) ∪ ((X)C ∩ Y ), and at least, one
from each set. Since (X)C ∩ (Y )C ∩ W ⊆ (X)C ∩ (Y )C , all attributes in Pi and in
(X)C ∩ (Y )C ∩ W , are also in (X)C ∩ (Y )C . Towards a contradiction, we now look
at the attributes that are in Pi and in ((X)C ∩ (W )C) ∪ ((X)C ∩ Y ). Those attributes
can be all in (X)C ∩ Y , since (X)C ∩ Y ⊆ ((X)C ∩ (W )C) ∪ ((X)C ∩ Y ), but in
this case, we would have P ⊗ (X −→

sd Y ), which is not possible, since P ∈ Σ′ and
X

−→
sd Y ∈ Σ+. If we have that some of the attributes (not all of them) are in (X)C ∩Y ,

then, the remaining ones from ((X)C ∩ (W )C) ∪ ((X)C ∩ Y ) not in (X)C ∩ Y must
be in (X)C ∩ (W )C ; besides, they cannot be in Y , because they would be then in
(X)C ∩ Y . Therefore, they are in (Y )C , that is, in (X)C ∩ (Y )C ∩ (W )C , and also
in (X)C ∩ (Y )C , in which case, Pi contains attributes only from (X)C ∩ (Y )C and
from (X)C ∩ Y , and then, P ⊗ (X −→

sd Y ), again, a contradiction. Hence, no attribute
in Pi and in ((X)C ∩ (W )C) ∪ ((X)C ∩ Y ) can be in (X)C ∩ Y , that is, they all
must be in (X)C ∩ (Y )C ∩ (W )C . We have, then, that the attributes in Pi can be split
into two classes: Pi ∩ (X)C ∩ (Y )C ∩ W and Pi ∩ (X)C ∩ (Y )C ∩ (W )C Since
(X)C ∩ (Y )C ∩ W ⊆ (Y )C ∩ W and (X)C ∩ (Y )C ∩ (W )C ⊆ (Y )C ∩ (W )C , we
have that Pi can be split into two non-empty classes (Y )C ∩W and (Y )C ∩ (W )C , that
is, classes W \ Y and (Y )C \ W , which means that P ⊗ (Y −→

sd W ), which is also a
contradiction. Hence, no such P exists in Σ′ and then, X

−→
sd W \ Y ∈ Σ′′.

Therefore, we have proved that Σ′′ contains all the symmetric dependencies that can be
derived by all the axioms of symmetric dependencies, that is, Σ+:

Theorem 1. Σ+ ⊆ Σ′′ in the formal context KSD(U) = (Part(U), SDU , ⊗).

Proof. By Propositions 2, 3,4 and 5.

We also have that Σ′′ contains a set of dependencies, and that Σ′ contains a set of
partitions. Before we prove that in Σ′′ we have only those dependencies that can be
derived by the axioms for symmetric dependencies, we study the nature of Σ′ and see
that, in fact, it contains all the dependency bases of Σ:

Proposition 6. ∀X ⊆ U : DBΣ(X) ∈ Σ′.

Proof. Note that by reflexivity, we have that DBΣ(X) � [X | (X)C ]. Sup-
pose that DBΣ(X) /∈ Σ′. In such a case, there is a Y

−→
sd W ∈ Σ such

that DBΣ(X) ⊗ (Y −→
sd W ). Then, there is a class Pi ∈ DBΣ(X) that

contains only attributes from W \ Y and from (W )C \ Y , and, at least, one
from each. Since Y

−→
sd W ∈ Σ, then, by Proposition 4 (augmentation),

(Pi)C −→
sd (W \ Y ) ∩ Pi ∈ Σ+. Note that since Pi must have, at least,

one attribute from (W )C , then, (W \ Y ) ∩ Pi ⊂ Pi. Towards a contradiction,
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by Theorem 1, we have that X
−→

sd Pi ∈ Σ′′, also that X
−→

sd (Pi)C ∈ Σ′′ and
finally, by Proposition 5 (transitivity) we have X

−→
sd (W \ Y ) ∩ Pi ∈ Σ′′. Since

X
−→

sd (W \ Y ) ∩ Pi ∈ Σ′′, then, Pi must be formed by the union of some classes
in DBΣ(X) which is not possible because (W \ Y ) ∩ Pi ⊂ Pi and Pi is one class in
DBΣ(X), which is a contradiction and then, DBΣ(X) ∈ Σ′.

We will restrict this result further later on, but we are using it now to finally prove that
Σ′′ contains only those dependencies that can be recursively derived by the axioms of
symmetric dependencies.

Theorem 2. Σ′′ = Σ+.

Proof. We prove that Σ′′ ⊆ Σ+ since in Theorem 1 it has been proved that Σ+ ⊆ Σ′′.
By contradiction, assume that X

−→
sd Y ∈ Σ′′ and X

−→
sd Y /∈ Σ+: there is a P ∈ Σ′

such that P ⊗ (X −→
sd Y ). Since X

−→
sd Y /∈ Σ+, we have that DBΣ(X) � [X | Y |

Z], otherwise X
−→

sd Y could be derived by the axioms of symmetric dependencies and
would belong to Σ+. By Proposition 6, we have that DBΣ(X) ∈ Σ′. Then, there are
two attributes in a class Pi in DBΣ(X) that are in different classes in [X | Y | Z].
Since X is all singletons in DBΣ(X), then, Pi ⊆ Y ∪ Z . Then, Pi ∩ Y = ∅ and
Pi ∩ Z = ∅. In this case, we have that DBΣ(X) ⊗ (X −→

sd Y ), which contradicts the
fact that DBΣ(X) ∈ Σ′, and then, we have that X

−→
sd Y | Z /∈ Σ′′.

Example 3. We define the context KSD(U) = (Part(U), SDU , ⊗), where U =
{ a, b, c, d }. According to the binary relation ⊗, the formal context is as follows:

a
→

b
|c

d

a
→

c
|b

d

a
→

d
|b

c

b
→

a
|c

d

b
→

c
|a

d

b
→

d
|a

c

c
→

a
|b

d

c
→

b
|a

d

c
→

d
|a

b

d
→

a
|b

c

d
→

b
|a

c

d
→

c
|a

b

a
b
→

c
|d

a
c
→

b
|d

a
d
→

b
|c

bc
→

a
|d

bd
→

a
|c

cd
→

a
|b

[abcd] × × × × × × × × × × × × × × × × × ×
[a | bcd] × × × × × × × × × × × × × × ×
[b | acd] × × × × × × × × × × × × × × ×
[c | abd] × × × × × × × × × × × × × × ×
[d | abc] × × × × × × × × × × × × × × ×
[ab | cd] × × × × × × × ×
[ac | bd] × × × × × × × ×
[ad | bc] × × × × × × × ×

[a | b | cd] × × × × × × × × × × × × ×
[a | c | bd] × × × × × × × × × × × × ×
[a | bc | d] × × × × × × × × × × × × ×
[ab | c | d] × × × × × × × × × × × × ×
[ac | b | d] × × × × × × × × × × × × ×
[ad | b | c] × × × × × × × × × × × × ×

[a | b | c | d] × × × × × × × × × × × × × × × × × ×

Now, we assume that Σ = { a
−→

sd b | cd, c
−→

sd a | bd }. In order to calculate the
closure of Σ, according to Theorem 2, we have that Σ+ = Σ′′. Therefore, we proceed
with calculating Σ′′ in that formal context. First, we calculate Σ′ (marked in grey in
the object row in the left-hand context) and finally Σ′′ which is the set of dependencies
that are marked in grey in the attribute column in the right-hand context:



A Formal Context for Symmetric Dependencies 99

a
→

b
|c

d

a
→

c
|b

d

a
→

d
|b

c

b
→

a
|c

d

b
→

c
|a

d

b
→

d
|a

c

c
→

a
|b

d

c
→

b
|a

d

c
→

d
|a

b

d
→

a
|b

c

d
→

b
|a

c

d
→

c
|a

b

a
b
→

c
|d

a
c
→

b
|d

a
d
→

b
|c

bc
→

a
|d

bd
→

a
|c

cd
→

a
|b

[abcd] × × × × × × × × × × × × × × × × × ×
[a | bcd] × × × × × × × × × × × × × × ×
[b | acd] × × × × × × × × × × × × × × ×
[c | abd] × × × × × × × × × × × × × × ×
[d | abc] × × × × × × × × × × × × × × ×
[ab | cd] × × × × × × × ×
[ac | bd] × × × × × × × ×
[ad | bc] × × × × × × × ×

[a | b | cd] × × × × × × × × × × × × ×
[a | c | bd] × × × × × × × × × × × × ×
[a | bc | d] × × × × × × × × × × × × ×
[ab | c | d] × × × × × × × × × × × × ×
[ac | b | d] × × × × × × × × × × × × ×
[ad | b | c] × × × × × × × × × × × × ×

[a | b | c | d] × × × × × × × × × × × × × × × × × ×

a
→

b
|c

d

a
→

c
|b

d

a
→

d
|b

c

b
→

a
|c

d

b
→

c
|a

d

b
→

d
|a

c

c
→

a
|b

d

c
→

b
|a

d

c
→

d
|a

b

d
→

a
|b

c

d
→

b
|a

c

d
→

c
|a

b

a
b
→

c
|d

a
c
→

b
|d

a
d
→

b
|c

bc
→

a
|d

bd
→

a
|c

cd
→

a
|b

[abcd] × × × × × × × × × × × × × × × × × ×
[a | bcd] × × × × × × × × × × × × × × ×
[b | acd] × × × × × × × × × × × × × × ×
[c | abd] × × × × × × × × × × × × × × ×
[d | abc] × × × × × × × × × × × × × × ×
[ab | cd] × × × × × × × ×
[ac | bd] × × × × × × × ×
[ad | bc] × × × × × × × ×

[a | b | cd] × × × × × × × × × × × × ×
[a | c | bd] × × × × × × × × × × × × ×
[a | bc | d] × × × × × × × × × × × × ×
[ab | c | d] × × × × × × × × × × × × ×
[ac | b | d] × × × × × × × × × × × × ×
[ad | b | c] × × × × × × × × × × × × ×

[a | b | c | d] × × × × × × × × × × × × × × × × × ×

This set of symmetric dependencies happen to be Σ+ according to the axioms for
symmetric dependencies, that is, Σ+ = { a

−→
sd b | cd, c

−→
sd a | b | d, ac

−→
sd b |

c, ad
−→

sd b | c, bc
−→

sd a | d, cd
−→

sd a | b }.

So far, we have seen that the binary relation ⊗ has been able to discard those dependen-
cies that are not in Σ+. The intuition behind this binary relation will be explained later,
once we see how Σ′ is a partition lattice that characterizes Σ+. We now prove some
extra properties of Σ′ with respect to the dependency bases of a set of dependencies.
We have seen in Proposition 6 that Σ′ contains all the dependency bases of Σ. Now,
we further restrict this result and prove that Σ′ is the set of all dependency bases of Σ
closed under meet. First, we prove that Σ′ is a closure system:

Proposition 7. Σ′ = [Σ′]∧.

Proof. We prove that if P, Q ∈ Σ′, then, P ∧ Q ∈ Σ′ by contradiction. Assume that
P ∧ Q /∈ Σ′. There is a X

−→
sd Y | Z ∈ Σ, where Z = (X ∪ Y )C , such that

P ∧ Q ⊗ (X −→
sd Y | Z). That is, P ∧ Q has a class Pi that contains only attributes

from Y \ X and Z . By construction of P ∧ Q, it can happen that Pi ∈ P and Pi ∈ Q,
but it would mean that P ⊗ (X −→

sd Y | Z) and that Q ⊗ (X −→
sd Y | Z), which is a

contradiction. Then, Pi is not contained in partitions P, Q. We can split the attributes
in Pi into two classes: Pi ∩ (Y \ X) and Pi ∩ Z . We take all the classes in P and in
Q that are (properly) contained in Pi, and assume that all those classes are contained in
Pi∩(Y \X) or in Pi∩Z . By construction of P ∧Q, then, class Pi would not be in P ∧Q,
since there is no class in P nor in Q that contains some attributes from Pi ∩ (Y \ X)
and from Pi ∩Z , and hence, in P ∧Q, class Pi would be split into classes Pi ∩ (Y \X)
and Pi ∩Z . Then, there is at least a class in P or in Q that contains some attributes from
Pi ∩ (Y \ X) and from Pi ∩ Z which is obviously contained in (Y \ X) ∪ Z = (X)C .
In this case, we have that P ⊗ (X −→

sd Y | Z) or Q ⊗ (X −→
sd Y | Z) which is a

contradiction.

As a natural consequence, we have:

Corollary 1. [DB(Σ)]∧ ⊆ Σ′.

Proof. By Proposition 6 and 7.

And we now prove that the set of partitions in Σ′ is exactly [DB(Σ)]∧.



100 J. Baixeries

Proposition 8. Σ′ ⊆ [DB(Σ)]∧.

Proof. Since Σ′ is a closure system by Proposition 7 and ∀X ⊆ U : DB(X) ∈ Σ′

by Proposition 6, we prove that ∀P ∈ M(Σ′), P is a dependency basis for some set
X ⊆ U . Suppose that this in not true: P ∈ M(Σ′) and P is not a dependency basis.
Let Q be the dependency basis of the set of attributes that are all singletons in P . Now,
assume that P � Q: there are at least two attributes in a class C ∈ P that are in two
different classes Ci, Cj ∈ Q. Note that the attributes in C, Ci, Cj are not in X , because
all the attributes in X are singletons in both P and Q. By Theorem 2, X

−→
sd Ci ∈ Σ′′.

But C contains at least one attribute from Ci and one from (X ∪ Ci)C , which means
that P ⊗ (X −→

sd Ci), which contradicts the fact that P ∈ Σ′.
Hence, since we are assuming that P is not a dependency basis, we only have the

possibility P � Q. Let P = [X | X ′ | C1 | · · · | Cn], where Ci are non-trivial
classes. Since Q = DBΣ(X) � [X | (X)C ] and P � Q, and P = [U ] because
DBΣ(U) = [U ], then, n ≥ 1. For each Ci, we claim that DBΣ((Ci)C) = [(Ci)C | Ci].
Assume that this is not true: DBΣ((Ci)C) � [(Ci)C | Ci], that is, the class Ci is

split in DBΣ((Ci)C) in, at least, two different classes, let them be C1
i , . . . Cm

i , where
necessarily m ≥ 2. It means that (Ci)C −→

sd Cj
i , but in such a case, we have that

P ⊗ (X −→
sd Cj

i ) because Ci contains all Cj
i . Since we are assuming that P ∈ Σ′, then,

DBΣ((Ci)C) = [(Ci)C | Ci]. But in this case, we have that P =
∧{ DBΣ((Ci)C) |

Ci ∈ P }, which contradicts the fact that P ∈ M(Σ′). Then, we have that if P ∈
M(Σ′), then, it must be a dependency basis for some X .

We now can prove the second result, that states that Σ′ is the lattice characterization of
Σ+ in terms of the following a closure operator:

Definition 5. For a given set Σ ⊆ SDU , where P, Q ∈ Part(U), we define the function
ΓΣ : Part(U) �→ Part(U) as:

ΓΣ(P ) =
∧

{ Q ∈ Σ′ | Q � P }
We remark the structural similarity of this operator with ΥΣ(X) defined in Section 3.
We also note that this operator also depends on the set Σ′ to compute its results. We
claim that this closure operator characterizes Σ+. We first prove that this operator com-
putes, in fact, the dependency basis for a given set of atributes:

Proposition 9. DBΣ(X) = ΓΣ([X | (X)C ]).

Proof. Assume that DBΣ(X) = [X | Y1 | · · · | Yn]. We have that DBΣ(X) ∈
[DB(Σ)]∧, and, by Proposition 1, DBΣ(X) � [X | (X)C ], so then, DBΣ(X) �
ΓΣ([X | (X)C ]). By definition of ΓΣ , we have that if ΓΣ([X | (X)C ]) = DBΣ(X)
it is because there is a DBΣ(X ′) such that DBΣ(X) ∧ DBΣ(X ′) � [X | U(X)C ].
In this case, we have that all a ∈ X are singletons in DBΣ(X ′). Hence, we have that
X ′ −→

sd X ∈ Σ+, and by transitivity, we have that ∀Yi ∈ DBΣ(X) : X ′ −→
sd Yi ∈ Σ+,

which implies that every class Yi ∈ DBΣ(X) must be the union of some classes of
DBΣ(X ′), it is: every class in DBΣ(X ′) must be included in some class of DBΣ(X).
But it would contradict that DBΣ(X)∧DBΣ(X ′) � [X | (X)C ], unless DBΣ(X) =
DBΣ(X ′) = ΓΣ([X | (X)C ]), as was to be shown.



A Formal Context for Symmetric Dependencies 101

And, finally, we prove the characterization of the set of symmetric dependencies:

Theorem 3. X
−→

sd Y ∈ Σ+ if and only if ΓΣ([X | Y ∪ Z]) = ΓΣ([X | Y | Z]).

Proof. We have that (X)C = Y ∪ Z , and, obviously, ΓΣ is a closure operator. We first
note that ΓΣ([X | Y ∪ Z]) � [X | Y | Z] if and only if ΓΣ([X | Y ∪ Z]) = ΓΣ([X |
Y | Z]). The right to left implication is as follows: by extensity, we have that ΓΣ([X |
Y | Z]) � [X | Y | Z], and then, ΓΣ([X | Y ∪ Z]) � [X | Y | Z]. The left to right
implication is as follows: by monotonicity, we have that ΓΣ([X | Y ∪ Z]) � ΓΣ([X |
Y | Z]), and by Proposition 9 we have ΓΣ([X | Y ∪ Z]) � [X | Y | Z]. Again, by
monotonicity and idempotency, we have ΓΣ([X | Y ∪ Z]) � ΓΣ([X | Y | Z]), and
then, ΓΣ([X | Y ∪ Z]) = ΓΣ([X | Y | Z]).

Finally, we have that by Proposition 1, X
−→

sd Y | (X ∪ Y )C ∈ Σ+ if and only if
DBΣ(X) � [X | Y | (X ∪ Y )C ], that is, by Proposition 9, if and only if ΓΣ([X |
Y ∪ Z]) � [X | Y | Z], and, as proved previously, if and only if ΓΣ([X | Y ∪ Z]) =
ΓΣ([X | Y | Z]).

This theorem states that the lattice Σ′ characterizes those symmetric dependencies that
belong to the closure of Σ calculating the closure of [X | Y ∪ Z] in the lattice Σ′.
Again, we note that both closure operators ΓΣ and ΥΣ are structurally equivalent, and
also are the algorithm that calculates ΓΣ and ΥΣ . The difference in the computation of
this algorithm is purely the lattice over which the result is calculated, which, in turn,
depends on the formal context.

Example 4. We take the same context given in Example 3. In this case, we have that if
Σ = { a

−→
sd b | cd, c

−→
sd a | bd }, then, Σ′ = { [a | b | c | d], [a | b | cd], [ac | b |

d], [acd | b], [abc | d], [abcd] } that forms this lattice:
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[a|b|c|d]
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��
��
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��
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�������	

[a|b|cd]
�������	

[ac|b|d]

��������������������������

�������	

[acd|b]

��
��

��
��

��
��

��
��

�������	

[abc|d]

��
��

��
��

��
��

��
��

�������	

[abcd]

As we have stated in Theorem 3, this lattice is the lattice characterization of Σ+ =
{ a

−→
sd b | cd, c

−→
sd a | b | d, ac

−→
sd b | c, ad

−→
sd b | c, bc

−→
sd a | d, cd

−→
sd a | b }. For
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instance, we have that c
−→

sd b | ad is in Σ+ because ΓΣ([c | abd]) = ΓΣ([ad | b | c]),
which is [a | b | c | d]. As a negative example, we have that ab

−→
sd c | d is not in Σ+,

since ΓΣ([a | b | cd]) = ΓΣ([a | b | c | d]), because ΓΣ([a | b | cd]) = [a | b | cd] and
ΓΣ([a | b | c | d]) = [a | b | c | d].

4.3 Discussion

We have previously deferred the discussion about the intuition behind the binary rela-
tion ⊗ until the explanation of how Σ′ characterized Σ+ was made. It has been seen in
Corollary 1 and in Proposition 8 that Σ′ is the closure under meet of the set of all de-
pendency bases that hold in Σ. Therefore, the idea of the relation ⊗ is to reject all those
partitions that (via closure under meet) would avoid a dependency from holding. Those
partitions can be divided into two groups: those that avoid complementation and those
that avoid transitivity (reflexivity and complementation are trivial in this discussion).
This distinction is not necessary for Armstrong dependencies.

For example, let us suppose that we have the set of attributes U = { a, b, c, d, e }, and
a symmetric dependency bc

−→
sd d | ae ∈ Σ. We first study what partitions avoid this

dependency from holding in the lattice characterization of Σ+. In such a case, since this
dependency is in Σ, then, the dependency basis of bc in Σ would be greater or equal
than [b | c | d | ae], that is, DBΣ(bc) � [b | c | d | ae] by Proposition 1. We have
proved in Theorem 3 that in such a case the equality ΓΣ([b | c | dae]) = ΓΣ([b | c | d |
ae]) must hold in the lattice characterization of Σ+. Then, it necessarily implies that we
must reject in Σ′ all the partitions that avoid this equality from holding, for instance, the
partition [b | c | ad | e], because by Proposition 6 DBΣ(bc) ∈ Σ′, and by Proposition 7
(that states that Σ′ is a closure system) [b | c | ad | e] ∧ DBΣ(bc), that is, [b | c | ade],
would also be in Σ′. As a consequence, we would have that ΓΣ([b | c | dae]) = [b | c |
dae] and that ΓΣ([b | c | d | ae]) = DBΣ(bc), and since DBΣ(bc) � [b | c | d | ae],
then, the equality ΓΣ([b | c | dae]) = ΓΣ([b | c | d | ae]) would not hold, which
is a violation of Theorem 3. Therefore, for any dependency X

−→
sd Y | Z , where

Z = (X ∪ Y )C , we have that the equality ΓΣ([X | Y ∪ Z]) = ΓΣ([X | Y | Z])
must hold in Σ′, and, therefore, all the partitions P such that P � [X | Y ∪ Z] and
P � DBΣ(X) are forbitten in Σ′. As we can see, these partitions must have all the
attributes X as singletons, otherwise the condition P � [X | Y ∪ Z] would not be
fulfilled, and also that there is a class that contains, at least, one attribute from Y and
one attribute from Z , otherwise, the condition P � DBΣ(X) would not be fulfilled. It
is easy to see that those partitions are included in Definition 4:

�Pi ∈ P : Pi ∩ Y = ∅ and Pi ∩ Z = ∅ and Pi ∩ X = ∅
In fact, if those partitions were in the lattice characterization of Σ+, they not only

would avoid the dependency X
−→

sd Y | Z from holding, but also, all those dependen-
cies that can be derived from X

−→
sd Y | Z by augmentation, which obviously must

also be characterized by that same lattice. Again, we take the case of bc
−→

sd d | ae.
We have said previously that the partition [b | c | ad | e] avoids bc

−→
sd d | ae from

holding in the lattice characterization of Σ+. We now take an example of a dependency
that can be derived by augmentation from bc

−→
sd d | ae and we will see that it is not
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characterized by Σ′ because of the presence of the partition bc
−→

sd d | ae. We take the
dependency bce

−→
sd d | a, that be in Σ+ because it can be derived from bc

−→
sd d | ae

by augmentation, and should be characterized by Σ′. This is not the case because
DBΣ(bce) = [a | b | c | d | e], which is present in the lattice and, then, we have that
ΓΣ([b | c | ad | e]) = [b | c | ad | e] and that ΓΣ([a | b | c | d | e]) = [a | b | c | d | e],
which again contradicts Theorem 3. This is only an example, but can easily be proved
for all the dependencies that can be derived by augmentation.

The expression (not(P � [X | Y ∪ Z]) and P � DBΣ(X)) is equivalent to that
in Definition 1, which characterizes all the elements that are to be rejected in the lattice
characterization of Σ+ for Armstrong dependencies. However, this is not the case for
symmetric dependencies. There is one more case not covered by the previous example
which is that of a partition that fulfils the conditions in Definition 4 and such that all
the attributes in X are not singletons, unlikely the previous example. This is the case
of transitivity, and, again, we take a simple example in order to illustrate it. We have
the dependency bc

−→
sd d | ae ∈ Σ. It is obvious that any dependency in Σ such as

X
−→

sd bc (where X ⊆ U) forces the presence of the dependency X
−→

sd d | ae in Σ+.
Therefore, all those partitions that do not allow the dependency X

−→
sd d | ae from

holding in the lattice characterization of Σ+ cannot be present in Σ′. For instance, if
we have that, apart from bc

−→
sd d | ae, the dependency a

−→
sd bc | de is in Σ as well,

then, we have that a
−→

sd d and a
−→

sd e are also in Σ+ by transitivity. In this case, the
forbitten partition is [a | bc | de]. It is necessary to note that this partition does not fulfil
the condition P � [X | Y ∪ Z] and P � DBΣ(X) as in the previous case. In general,
these partitions that avoid transitivity from holding are described as partitions that have
X in one class and also one class that contains at least one attribute from Y and one
from Z .

5 Conclusions

We have presented a formal context that provides the calculation of the closure and
its characterization for sets of symmetric dependencies. A similar formal context for
Armstrong dependencies was presented in [18]. The interest of this formal context is
twofold:

1. We can use existing FCA tools to calculate the closure of a set of symmetric de-
pendencies and its characterization, and we can also use this context to answer the
implication problem for symmetric dependencies.

2. We may use this context to answer questions for symmetric dependencies that have
already been solved for Armstrong dependencies.

Concerning the first point, the formal context defined in Section 4 provides an al-
gorithmically simple way to check whether a symmetric dependency σ belongs to the
closure of a set of symmetric dependencies Σ. This computation can also be seen as
to check whether the Horn clause Σ → Σ ∪ { σ } holds in that context. In both cases,
this task consists purely in a search throughout the context. The method for performing
this computation is the same for Armstrong and symmetric dependencies. Intuitively,
and comparing these methods with the algorithm in [5], we only need to perform a
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search, since the part that consists in calculating the dependency basis is already con-
tained in the binary relation. This is why the presented formal context can be seen as a
generalization for treating both Armstrong and symmetric dependencies, as well as an
alternative for existing algorithms that calculate the implication problem or the closure
for symmetric dependencies (efficient algorithms that handle formal contexts can be
found in [18,24]).

On the other hand, concerning the second point, and parallelizing the work already
started in [18,15] for Armstrong dependencies, this formal context opens the way to de-
duce the basis of a set of symmetric dependencies, that is, the minimal set of partitions
that characterizes a set of dependencies. Although to check whether a dependency holds
in a lattice characterization of Σ+ is also the same algorithm for Armstrong and sym-
metric dependencies, we note that the definitions in [15,18] for calculating the minimal
representation of a set Σ ⊆ SDU cannot be directly translated for symmetric depen-
dencies, since the lattices that characterize Armstrong dependencies are different from
those that have been presented in Section 3. However, the same intuitions may be used.
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Abstract. In this work we want to clarify, how many non-similar plane
diagrams a planar lattice can have. In the first part demonstrate how to
find all these diagrams by specifying all realizers, i.e. all pairs of linear
orders whose intersection equals to the lattice order. The tools we use to
achieve that goal are Ferrers-graphs [DDF84, Reu89] and left-relations
on contexts [Zsc07]. Finally we determine the set of numbers which can
occur as the number of plane diagrams of a planar lattice.

1 Introduction

A lattice V is called planar if it possesses a diagram1 pos(V) without edge cross-
ings. There exist several characterizations of planar lattices and many authors
worked on this topic, see [BFR71, Cog82, DDF84, DM41, KR75, Pla76, Spi82]
for instance. Some of the results allow to specify a plane diagram in polynomial
time (w.r.t. the size of the lattice) by considering the underlying graph [Pla76]
or the incomparability graph of the lattice [Spi82].

In this work we are interested to find all plane diagrams of a lattice. Since
their number is either zero or uncountable, we need to classify diagrams. This is
done by the notion of similarity [KR75].

The base for our consideration is the Ferrers-graph [DDF84] of the standard
context [GW99] of a lattice. Its deep interrelation to planarity [DDF84, Zsc07]
and the usage of left-relations [Zsc05] will help us to find an algorithm that
determines the number of all plane diagrams in polynomial time. Thereby we
also determine the number of realizers [DM41] of a lattice of dimension two.

Finally we want to answer the question, which finite numbers can occur as
the number of plane diagrams of a planar lattice.

2 Preliminaries

In this work, all considered structures will be finite. A lattice V possesses a set
of

∨
-irreducibles J(V) and a set of

∧
-irreducibles M(V) (which are the sets of

irreducible objects and attributes respectively in terms of FCA). By the word
context we will understand the standard context (J(V), M(V), ≤) of V. Sloppily
we will sometimes write J and M instead of J(V) and M(V) respectively.
1 We sloppily use this term for the notion of line diagram. That is the image of a

function pos mapping lattice elements to points in the Euclidian plane and elements
of the neighborhood relation of V to straight line segments connecting their end
points. For a formal definition of that notion, see for instance [KR75, Zsc05].

R. Medina and S. Obiedkov (Eds.): ICFCA 2008, LNAI 4933, pp. 106–123, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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2.1 Dimension and Conjugate Orders

Dushnik and Miller [DM41] were the first to introduce these two concepts to
order theory. The dimension of a poset P = (P, ≤) is the smallest number of
linear orders intersecting in ≤. A conjugate order on a poset is a strict order2 on
P whose elements are pairs of incomparable elements of P .

Definition 1. [DM41] Let P = (P, ≤) be an ordered set. The incomparability
relation in P is denoted by ‖.
1. We call Lc conjugate relation if Lc ∪ Lc

−1 = ‖.
2. We call Lc conjugate order if additionally Lc is a strict order.

Definition 2. [DM41] Let P = (P, ≤) be an ordered set. A family {Ri}i∈I of
linear orders on P is called realizer of P if ≤=

⋂
i∈I Ri. The dimension dim(P )

is the smallest cardinal number m, s.t. there exists an m-elemental realizer of P .

They also discovered the dependency between both terms if P is a lattice and
dim(P ) = 2:

Lemma 1. [DM41] Let V = (V, ≤) be a lattice possessing a conjugate order L.
Then the set {L ∪ <, L−1 ∪ <} is a realizer.

Let V be a lattice of dimension 2 with a realizer {L, R}. Then both Lc:=L \ ≤
and Rc:=R \ ≤ are conjugate orders. In particular, L−1

c = Rc.

The importance of both concepts to the characterization of planar lattices is
clarified in the following theorem.

Theorem 1. [BFR71, Bir67, DM41] Let V be a lattice. Then the following are
equivalent:

1. V is planar.
2. There exists a conjugate order on V.
3. dim(V) ≤ 2.

2.2 Left-Relations on Lattices

A sorting relation on a lattice is just the union of strict linear orders on incom-
parable

∧
-irreducibles sharing a common upper neighbor:

Definition 3. [Zsc05] Let V be a finite lattice and M be the set of its
∧

-irre-
ducible elements. A strict order La ⊆ M × M is called sorting relation if the
following condition3 holds for all elements m, n ∈ M :

m∗ = n∗ ⇐⇒ m La n or n La m.

2 i.e. an irreflexive, asymmetric and transitive binary relation.
3 With m∗ we denote the unique upper neighbor of a

∧
-irreducible m.
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Definition 4. [Zsc05] Let V be a finite lattice with a given sorting relation La.
For arbitrary lattice elements v and w, we define

M(v, w) = {(v′, w′) ⊆ M × M | v ≤ v′, w ≤ w′, v ‖ w′, w ‖ v′}.

We define the relation L ⊆ V × V according to:

v L w : ⇐⇒
{

v La w, v, w ∈ M, v∗ = w∗

∃(m, n) ∈ M(v, w) : m L n, else

L is called left-relation and R := L−1 is called right-relation on the lattice V. If
L is additionally a strict order, we will call it left-order.

A sorting relation uniquely defines a left-relation. Instead of considering only
some

∧
-irreducible elements, the left-relation states for all pairs of incompa-

rable lattice elements (v, w), whether v is left or right of w. The comparable
elements are understood to be above or below each other. This extension is done
iteratively: v is left of w if there exist two

∧
-irreducibles m and n above v and

w respectively, s.t. m is left of n:
The interrelation to conjugate orders is revealed in the following proposition.

Namely every conjugate order is a left-order, i.e. can be constructed from a
sorting relation.

Proposition 1. [Zsc05] Let L be a relation on a finite lattice V. Then

L is a conjugate order ⇐⇒ L is a left-order.

Since a left-relation ise determined by a sorting relation defined only on some
pairs of

∧
-irreducibles it is easier to handle than a conjugate order.

2.3 Ferrers-Graphs

Definition 5. [Cog82, GW99] A Ferrers-relation F is a relation F ⊆ J × M
meeting

j1Fm1 ∧ j2Fm2 =⇒ j1Fm2 ∨ j2Fm1.

for all j1, j2 ∈ J and m1, m2 ∈ M . The Ferrers-dimension fdim(R) of a relation
R ⊆ J × M is the smallest number of Ferrers-Relations Ft ⊆ J × M, t ∈ T ,
whose intersection is equal to R, i.e. R =

⋂
t∈T Ft.

In a cross table representing a relation F we notice
that F is a Ferrers-relation if and only if the configu-
ration depicted on the right does not occur.

m1 m2

j1 ×
j2 ×

The inverse F of a Ferrers-relation is again a Ferrers-relation. Hence the
Ferrers-dimension of a relation R is the smallest cardinality of a set of Ferrers-
relations {Ft}t∈T covering the empty cells of its cross table [GW99], i.e. R :=
(J × M) \ R =

⋃
t∈T Ft.
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The next result connects the Ferrers-dimension and the order dimension. Since
a lattice is planar if and only if its order dimension is at most two (see Theorem
1), this gives us the key to our further considerations.

Theorem 1. 4 [GW99] Let V be a lattice. Then fdim(≤) = dim(V).

Although the calculation of the Ferrers-dimension in general is NP-complete
[GW99], it is treatable in the case (≤ 2) that we are interested in. For that
purpose we introduce the notion of a Ferrers-graph. Its nodes are the empty
cells of a context and its edges indicate which vertices cannot belong to the
same Ferrers-relation Ft. See Figure 1 for an example.

Definition 6. [DDF84, Reu89] Let R ⊆ J × M be a relation. We define the
Ferrers-graph Γ̃ (R) as an undirected simple graph with vertex set V and edge
set E as follows:

V := R E := {{(j1, m2), (j2, m1)} | (j1, m1), (j2, m2) ∈ R}.

The bare Ferrers-graph Γ (R) is obtained from Γ̃ (R) by deleting all isolated ver-
tices. By the Ferrers-graph Γ̃ of a lattice V we denote the Ferrers-graph of its
standard context K = (J(V), M(V), ≤).

K m1 m2 m3 m4

j1 × × • •
j2 • × × •
j3 • • × ×

(j1, m3)

(j1, m4)

(j2, m4)

(j2, m1)

(j3, m1)

(j3, m2)

Fig. 1. A context K given by a cross table (left) and its appropriate Ferrers-graph Γ
(right)

The following theorem connects the Ferrers-dimension to a property of the
Ferrers-graph, namely the bipartiteness5. A constructive proof (finding a plane
diagram of the respective lattice) is provided in [Zsc07].

Theorem 2. [DDF84] A relation R has the Ferrers-dimension of at most two
if and only if its Ferrers-graph is bipartite.

2.4 Left-Relations on Contexts

A left-relation on a context can be understood as a restriction of a lattice’s left-
relation on the incomparable pairs (j, m) of a

∨
-irreducible j and a

∧
-irreducible

m. The relation can be filled into the empty cells of the standard context of V:
4 Originally this assertion was given more generally for posets by Cogis in [Cog82].
5 A graph (V, E) is bipartite if their exists a partition of V into two classes V1 and V2,

s.t. there is no edge in the subgraphs induced by V1 and V2.
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Definition 7. Let V be a lattice and K = (J, M, ≤) its standard context.

1. The relation ‖K = (J × M) ∩ ‖ is called incomparability relation on K.
2. A relation L ⊆ ‖K is called left-relation on K. We denote R := ‖K \ L.

Let V be a lattice with Ferrers-graph Γ̃ . If Γ̃ is bipartite, it is evident to consider
the bipartition classes L̃ and R̃ of Γ̃ as left- and right-relation on the standard
context. More precisely:

L := L̃ \ {(j, m) | j > m} and R := R̃ \ {(j, m) | j > m}

are the respective left- and right- relations. They induce a relation L̃ ⊆ M × M
by

m L̃ n : ⇐⇒ m ‖ n and (∃j ∈ J : m ≥ j L n or n ≥ j R m).

Furthermore, if Γ̃ consists of components Γ̃k, k ∈ K we partition the vertex
classes L and R by Lk := L ∩ V (Γ̃k) and Rk := R ∩ V (Γ̃k). We introduce
induced relations L̃k, k ∈ K by

m L̃k n ⇐⇒ m ‖ n and (∃j ∈ J : m ≥ j Lk n or n ≥ j Rk m).

We observe that for a bipartite graph Γ and
∧

-irreducibles m ‖ n the following
equivalence holds:

∃j ∈ J : m ≥ j Lk n ⇐⇒ ∃h ∈ J : n ≥ h Rk m.

The following Lemma shows that the introduction of the induced relation L̃
“almost” guarantees the existence of a conjugate order on V if the Ferrers-graph
Γ is bipartite. Unfortunately the transitivity of L̃ is much harder to treat than
the asymmetry.

Lemma 2. [Zsc07] Let V a lattice and Γ its bipartite Ferrers-graph with vertex
classes L and R. Let L̃ be the relation induced by L. Then L̃ is asymmetric and
connex on pairs of incomparable attributes. Furthermore the following equiva-
lence holds:

L̃ is transitive ⇐⇒ L̃ can be extended 6 to a left-order.

2.5 The Geometry of Lattice Diagrams

Kelly and Rival gave a possibility to categorize diagrams of ordered structures
by means of similarity. That concept is comparable to the topological equivalence
used in graph theory [Die96].

Definition 8. [KR75] Let V = (V, ≤) be a lattice and pos(V) a plane line
diagram of it. Let λ∗ ⊆ V × V be a relation defined as follows: v λ∗ w holds
if and only if v and w have a common upper neighbor v∗ and the straight line

6 i.e. there exists a sorting relation La⊆L̃, s.t. the left-relation L induced by La con-
tains L̃.
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segment connecting v and v∗ is left7 of the straight line segment connecting w
and v∗. Two diagrams are called similar if their respective λ∗ relations are the
same. The left-relation λ ⊆ V × V induced by pos(V) is defined by

v λw : ⇐⇒ v ‖ w and
∃v′ ≥ v, w′ ≥ w : v′, w′ ≺ (v ∨ w) with v′ λ∗ w′.

The following theorem states that we can obtain all non-similar plane diagrams
of a lattice V by calculating all left-orders on V. By additionally reminding
Lemma 1 and Proposition 1, we conclude that every realizer {L, R} corresponds
to exactly two plane diagrams possessing the left-relations L and R respectively.

Theorem 3. [KR75, Zsc05] Let V be a finite lattice. The following statements
are equivalent.

1. There exists a plane diagram pos(V) with the left-relation L.
2. L is a left-order on V.

It is well known that for triconnected8 planar graphs every two diagrams
are equivalent [Die96], this also holds for diagrams of triconnected digraphs
[BDMT98].

If we are interested in all plane diagrams, we have to be able to handle lattices
V = (V, ≤) having several triconnected components in their corresponding graph
(V, ≺). We therefore use the following notion:

Definition 9. [KR75] Let V be a finite lattice and let a < b for two elements of
V. An < a, b >-component is a connected component of the graph ((a, b), ≺). An
< a, b >-component C is called proper if y ≤ x =⇒ y ≤ a and y ≥ x =⇒ y ≥ b
holds for all elements x ∈ C and y ∈ V \ C.

Later we will see later that “reflecting” and “permuting” proper components
will supply all the plane diagrams of a lattice. An appropriate characterization
was already given in [KR75].

3 How to Find All Plane Diagrams of a Lattice

3.1 Foundation

We know that a lattice is planar if its Ferrers-graph is bipartite [DDF84]. A
bipartition V (Γ ) =L

.∪ R of Γ determines a conjugate order L̂ on V [Zsc07].
Moreover, a left-order L defines uniquely a bipartition on the bare graph Γ by
restricting L to incomparable pairs of J × M . This follows from Lemma 2.
7 We think that the meaning of “left” is intuitively clear. We omit the precise definition

(given in [KR75]) due to better readability of the paper.
8 A graph is triconnected if removing two arbitrary nodes keeps the graph connected

and non-empty.
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Hence the possible candidates for plane diagrams can be obtained by consid-
ering the set of bipartitions of Γ . If Γ consists of κ components, we find at most
2κ plane diagrams and 2κ−1 realizers of the lattice order ≤ (see Theorem 3 and
Lemma 1).

3.2 About the Structure of the Bare Ferrers-Graph Γ

Our first result clarifies the connection between the bare Ferrers-graph of a lattice
and the incomparability relation on its standard context K. The Ferrers-graph
Γ̃ is defined on all pairs (j, m) satisfying j > m or j ‖ m. For the bare Ferrers-
graph Γ however V (Γ ) =‖K holds. That means that a bipartition L

.∪ R of Γ
exactly defines two left-relations L and R on K.

Proposition 2. [Zsc07] Let V be a lattice and Γ̃ its Ferrers-graph. A vertex
(j, m) of Γ is isolated if and only if j > m.

Now we want to observe which vertices of Γ are in the same component for a
given context K. It turns out that sequences of

∨
-irreducibles and

∧
-irreducibles

of the form
m0 ≥ j1 ≤ m1 ≥ j2 ≤ m2 ≥ . . . ≥ jr ≤ mr

play an important role for connectivity.

Definition 10. [Zsc07] Let K = (J, M, ≤) be a context and [v, v] be an interval
in V. A sequence p = m0 ≥ j1 ≤ m1 ≥ j2 . . . ≥ jr ≤ mr of

∨
-irreducibles ji and∧

-irreducibles mi is called connection of m0 and mr in [v, v] if

∀i ∈ {0, . . . , r} : mi �≥ v and ∀i ∈ {1, . . . , r} : ji �≤ v

If the condition ji ≤ mk =⇒ k ∈ {i, i − 1} holds for all i ∈ {1, . . . , r} as well
then p is called shortest connection.

Every connection p between m0 and mr contains a shortest connection q [Zsc07].

Definition 11. [Zsc07] Let K be the standard context of a lattice V and [v, v]
be an interval in V.

1. A
∧

-irreducible m ∈ [v, v] is called bound if there exists a
∧

-irreducible
n /∈ [v, v] and a connection p = m . . . n in [v, v].

2. Two
∧

-irreducibles m, n ∈ [v, v] are called connected if there exists a con-
nection p = m . . . n in [v, v].

3. Three pairwise incomparable
∧

-irreducibles m1, m2, m3 are called free triple
if none is bound and no two are connected in [m1 ∧m2 ∧m3, m1 ∨m2 ∨m3].

Definition 12. [Zsc07] Let [v, v] be an interval in the lattice V. Let U [v, v]
denote the set of non-bound

∧
-irreducibles in [v, v]. Let m ∈ U [v, v]. The set

Um[v, v] := {n ∈ M | m and n are connected}
is called the m-component of [v, v].
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Obviously “connected” in [v, v] is an equivalence relation. Therefore the set of
m-components in [v, v] is a partition of U [v, v]. An equivalence class Um[v, v]
contains exactly the

∧
-irreducibles of one proper component of [v, v].

Definition 13. Let K = (J, M, ≤) be the standard context of a lattice V, Γ its
Ferrers-graph and m‖n ∈ M . By Γm,n we denote that component of Γ containing
all edges between m and n, i.e. all edges9 of the form {(j, m), (h, n)} ∈ E(Γ ).

The next two results of this section point out that the free triples are the only
problematic case for finding transitive induced left-relations L̃ out of a bipartition
L

.∪ R of the bare Ferrers-graph Γ .

Corollary 1. [Zsc07] Let V be a lattice with bipartite Ferrers-graph Γ . Let L̃
be the induced relation by an appropriate bipartition and m1, m2, m3 ∈ M(V).
If m1 L̃ m2 L̃ m3 L̃ m1 then (m1, m2, m3) is a free triple.

Lemma 3. [Zsc07] Let V be a lattice with Ferrers-graph Γ . Let m1, m2, m3

be
∧

-irreducible elements. Then (m1, m2, m3) is a free triple if and only if the
components Γmi,mk

(i �= k ∈ {1, 2, 3}) are pairwise disjoint.

Finally we remind an obvious observation about bipartite graphs. If some of the
components of a graph possessing a bipartition are “turned around”, one again
obtains a bipartition.

Lemma 4. [Zsc07] Let Γ = (V, E) be a bipartite graph with vertex classes X and
Y and let Γk, k ∈ K its components. Let Xk = X ∩ V (Γk) and Yk = Y ∩ V (Γk)
be the vertex classes of the appropriate components Γk. Let Rk ∈ {Xk, Yk} for
all k ∈ K. Then the sets R =

⋃
k∈K Rk and V (Γ ) \ R are a bipartition of Γ .

3.3 Components of Γ and m-Components of V

The strategy to find all plane diagrams of a lattice V is as follows: We classify the
components of the bare Ferrers-graph Γ into two types. A component Γk of type
1 acts on one proper component (i.e. for all vertices (j, m) of that component we
find a proper [v, v]-component with j, m ∈ [v, v]). In contrary, a component Γk

of type 2 acts on two proper [v, v]-components C1, C2, i.e. for each vertice (j, m)
either j ∈ C1, m ∈ C2 or j ∈ C2, m ∈ C1 holds. Then we show (by considering the
appropriate components of Γ ) that all plane diagrams of a planar lattice can be
obtained by reflecting one proper component or by permuting proper components
over one interval [v, v]. However, instead of proper components C we use to
consider the respective m-components Um, which are just a restriction to the
contained

∧
-irreducible elements. Before we need some preliminary observations.

Definition 14. Let V be a lattice with Ferrers-graph Γ . Let Γk be a component
of Γ . By

M(Γk) := {m ∈ M | ∃j ∈ J : (j, m) ∈ V (Γk)}
9 It is easy to see that indeed all these edges are in one component of Γ (see [Zsc07]).
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we denote the set of all
∧

-irreducibles which belong to an edge of Γk. Dually we
define the set J(Γk). The interval I(Γk) = [v, v] of a component Γk is defined by

v :=
∧

M(Γk) and v :=
∨

M(Γk).

Lemma 5. Let V be a lattice with Ferrers-graph Γ . Let Γk be a component
possessing the interval [v, v] = I(Γk) with |V (Γk)| > 1. Then

M(Γk) ⊆ (v, v) and J(Γk) ⊆ (v, v)

Proof. 1. Let m ∈ M(Γk). Since Γk consists of at least two vertices, we find
elements n ∈ M(Γk) and j, h ∈ J(Γk), s.t. ((j, m), (h, n)) is an edge in Γk.
By Definition 6 we note m ‖ n and therefore v ≤ m ∧ n < m < m ∨ n ≤ v.

2. Let j ∈ J(Γk). Since Γk consists of at least two vertices, we find elements
m, n ∈ M(Γk) and h ∈ J(Γk), s.t. ((j, m), (h, n)) is an edge in Γk. By
Definition 6 we note j ≤ n and j ‖ m and find with the first statement of
Lemma 5 j ≤ n < v and v < m, i.e. j �≤ v.
We finally have to prove j ∦ v. It is a basic result of lattice theory that
j =

∧{ñ ∈ M | m ≥ j}. Hence we have to show ∀ñ ∈ M : ñ ≥ j =⇒ ñ ≥ v
only. Let ñ be an arbitrary

∧
-irreducible satisfying j ≤ ñ. Since ñ �≤ m

(that would imply j ≤ m) we have either ñ > m > v or ñ ‖ m. The latter
case implies the existence of a

∨
-irreducible h̃ satisfying ñ ‖ h̃ ≤ m. Hence

{(h̃, ñ), (j, m)} is an edge of Γk. Therefore ñ ∈ M(Γk) and hence ñ > v.

Lemma 6. Let V be a lattice with Ferrers-graph Γ . Let

(j0, n0)E(j1, n1)E . . . E(jr−1, nr−1)E(jr, nr)

be an edge sequence in a component Γk of the Ferrers-graph. Then n0 is connected
to either nr−1 or nr in the interval [v, v] of Γk.

Proof. By Definition 10 we note that
p := n0 ≥ j1 ≤ n2 ≥ j3 ≤ n4 . . . ≤ ns is a
connection in V with either s = r − 1 (if r is
odd) or s = r (if r is even). Let [v, v] be the
interval of Γk. With Lemma 5 we know that
ji > v and ni < v holds for all i ∈ {0, . . . , r}.
Hence p is a connection of n0 and ns in [v, v].

See the picture on the right for a visualiza-
tion, the edge sequence E is represented by
the graph in the diagonal and the connection
p by the thick crosses.

n0 n1 n2 n3 n4

j0

j1

j2

j3

j4

Lemma 7. Let V be a lattice with Ferrers-graph Γ . Let Γm1,m2 = Γm3,m4 be
a component of Γ possessing the interval [v, v]. Then m1, m2 are connected in
[v, v] if and only if m3, m4 are connected in [v, v].
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Proof. Since Γm1,m2 = Γm3,m4 , there exists an edge sequence

(h1, m1)E(h2, m2)E . . . E(h3, m3)E(h4, m4)

By Lemma 6 this refers w.l.o.g. to a connection between m1 and m3 and m2 and
m4 in [v, v] respectively. If m1 and m2 are connected, we find a connection

p := m3 . . . m1 . . . m2 . . . m4

in [v, v]. Since m3, m4 ∈ M(Γm3,m4), both
∧

-irreducibles are connected. Dually,
if m3, m4 are connected, then m1, m2 too.

Definition 15. Let Γ be the Ferrers-graph of a lattice V. A component Γm,n is
of type 1 if m and n are connected in I(Γm,n). Otherwise Γm,n is of type 2.

Definition 15 is well-defined, in particular a component is either of type 1 or of
type 2. This is a direct consequence of Lemma 7.

In the following we prepare, as emphasized in the beginning of that section,
for a result stating that every component of a Ferrers-graph acts on one or on
two m-components.

Lemma 8. Let V be a lattice with Ferrers-graph Γ . Let m, m1, m2 ∈ M(V), s.t.
there is a connection between m and m1 in [v, v] := [m1 ∧ m2, m1 ∨ m2]. Then
Γm1,m2 = Γm,m1 or Γm1,m2 = Γm,m2 .

Proof. Let q = n0 ≥ h1 . . . ≥ hr ≤ nr be a shortest connection in [v, v] for
adequate chosen

∨
-irreducibles hi and

∧
-irreducibles ni between n0 := m and

nr := m1. Let {(j1, m2), (j2, m1)} be an edge of Γm1,m2 . We distinguish the
following cases:

1. Let j2 �≤ ni for all i ∈ {0, . . . , r} and hi �≤ m2 for all i ∈ {1, . . . , r}. Then

(j2, n0)E(h1, m2)E(j2, n1)E(h2, m2)E . . . E(hr, m2)E(j2, nr),

is an edge sequence and hence Γm1,m2 = Γm,m2 . Note that this case always
occurs if Γm1,m2 is of type 2.

2. Let j2 ≤ nk for one k ∈ {0, . . . , r} and hr �≤ nk. Then hr ≤ nr implies k < r.
Then

(j1, m2)E(j2, nr)E(j1, nk)E(hk, nr)E(j1, nk−1)E(hk−1, nr)E
. . .E(h1, nr)E(j1, n0)

is an edge sequence and hence Γm1,m2 = Γm,m1 .
3. Let hk ≤ m2 for one k ∈ {1, . . . , r}. From hk �≤ m1 ∧ m2 we conclude k < r.

Then

(j2, m1)E(j1, m2)E(hk, nr)E(j1, nk−1)E(hk−1, nr)E . . . E(h1, nr)E(j1, n0)

is an edge sequence and hence Γm1,m2 = Γm,m1 .
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4. Let k be an index, s.t. j2, hr ≤ nk. Note k < r, since (j2, m1) ∈ V (Γ )
and hence j2 ‖ m1. Since q is a shortest connection, we observe k = r − 1.
Since nr−1 �≥ m1 ∨ m2 we conclude w.l.o.g. nr−1 �≥ m2. Hence we find a∨

-irreducible j satisfying j ≤ m2 and j �≤ nr−1. Then

(j1, m2)E(j2, m1)E(hr, m2)E(j, nr−1)E(hr−1, m2)E . . . E(h1, m2)E(j2, n0)

is an edge sequence and hence Γm1,m2 = Γm,m2 .

Lemma 9. Let m ∈ M(Γm1,m2), s.t. m is not comparable to m1 or m2. Then
Γm1,m2 = Γm,m1 or Γm1,m2 = Γm,m2 .

Proof. If there is a connection between m and m1 or m2 in I := [m1∧m2, m1∨m2]
then we can apply Lemma 8 to prove the claim. Since m ∈ M(Γm1,m2), we
find (for adequate

∨
-irreducibles hi and

∧
-irreducibles ni) an edge sequence

K := (h1, n1)E (h2, n2)E . . .E (hr, nr) with n1 = m1, n2 = m2 und nr = m.
W.l.o.g. (in case of 2 � | r)
p = n1 ≥ h2 ≤ n3 ≥ . . . ≥ hr−1 ≤ nr and q = h1 ≤ n2 ≥ h3 ≤ . . . ≤ nr−1 ≤ hr

are connections in I(Γm1,m2). Consider the sequence

S = (hr, nr), (hr−1, nr−1), (hr−2, nr), (hr−1, nr−3), (hr−4, nr),
. . . , (hr−1, n2), (h1, nr).

1. In case of hi ‖ nr for all i ∈ {1, . . . , r} \ {r − 1} and hr−1 ‖ nj

for all j ∈ {1, . . . , r} \ {r, r − 2}, S is an edge sequence and
Γn1,n2 = Γnr−1,nr = Γn2,nr .

2. Otherwise let t be the smallest index satisfying ht ≤ nr or hr−1 ≤ nt (remind
that ht > nr =⇒ hr−1 ≤ nt−1 and hr−1 > nt =⇒ ht−1 ≤ nr).
(a) Let hr−1 ≤ nt:

(a1) t ∈ {1, 2}. First we observe hr−1 ≤ n2 ⇐⇒ hr−1 ≤ n1, otherwise we
had a connection nt ≥ hr−1 ≤ nr in I. By precondition nr �≤ n1 ∧ n2.
Therefore we find a

∨
-irreducible j ≤ nr satisfying w.l.o.g. j �≤ n1.

If j �≤ nr−1 then we extend K by two nodes and gain the sequence K̃ =
(h1, n1)E . . .E(hr, nr)E(j, nr−1E(hr, nr). For the appropriate sequence

S̃ = (hr, nr), (j, nr−1), (hr−2, nr), (j, nr−3), (hr−4, nr),
. . . , (j, n2), (h1, nr)

we can apply one of the other cases.
If otherwise j ≤ nr−1 then we find in case of h2 ≤ nr−1 an edge se-
quence (j, n1)E(h2, nr)E(hr−1, nr−1) (or a connection m1 ≥ h2 ≤ nr in
I) and hence Γn1,nr =Γnr,nr−1 =Γn1,n2 . Finally assume h2 �≤ nr−1, then
(h2, nr)E(j, n1)E(h2, nr−1) is an edge sequence, i.e. Γn1,nr = Γn1,nr−1 .
Moreover, by the construction of K, also nr−1 is an element of M(Γn1,n2).
We observe that n1 ≥ hr−1 ≤ nr is a connection in [nr ∧nr−1, nr ∨nr−1].
With Lemma 8 we conclude Γnr,nr−1 = Γn1,nr or Γnr,nr−1 = Γn1,nr−1

which both implies Γn1,n2 = Γn1,nr .
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(a2) t > 2: Then
(ht, nt)E(hr−1, nt−1)E(ht−2, nr)E(hr−1, nt−3)E . . . E(hr−1, ny)E(hx, nr)
with y − 1 = t (mod 2) and x = 3 − y is an edge sequence in Γm,m2 =
Γm1,m2 since (ht, nt) ∈ V (Γm1,m2).

(b) Let ht ≤ nr: In case of t ≤ 2 we find the connection m3−t ≥ ht ≤ m in
I. Otherwise t > 2 and

(ht, nt)E(ht−1, nr)E(hr−1, nt−2)E(ht−3, nr)E . . . E(hy, nr)E(hr−1, nx)

is an edge sequence with y − 1 = t (mod 2) and x = 3 − y in Γm1,m2 .

Lemma 10. Let V be a lattice with Ferrers-graph Γ . Let m, m1, m2 be
∧

-irre-
ducibles satisfying m ∈ Um1(I(Γm1,m2)). Then m ∈ M(Γm1,m2).

Proof. If m ∈ Um1 [m1 ∧ m2, m1 ∨ m2] then the claim follows from Lemma 8.
Let otherwise q = m ≥ h1 ≤ n1 ≥ . . . ≥ hr ≤ m1 be a shortest connection

containing a
∨

-irreducible hk ≤ m1 ∧m2 or a
∧

-irreducible nk ≥ m1 ∨m2. Then
hk or nk respectively are elements of I(Γm1,m2) and according to Definition 14
we find a

∧
-irreducible m̃ ∈ M(Γm1,m2) incomparable to hk or nk. According to

Lemma 9 let w.l.o.g. Γm1,m2 = Γm̃,m1 . We observe that hk or nk respectively are
elements of I(Γm̃,m1) and hence q is a connection in I(Γm̃,m1). Applying Lemma
8 we find m ∈ M(Γm̃,m1) = M(Γm1,m2).

Corollary 2. Let V be a lattice with Ferrers-graph Γ . Let Γm1,m2 be a compo-
nent of Γ possessing the interval I := I(Γm1,m2).

1. If Γm1,m2 is of type 1 then M(Γm1,m2) = Um1(I) = Um2(I).
2. If Γm1,m2 is of type 2 then M(Γm1,m2) = Um1(I)

.∪ Um2(I).

Proof. Lemma 10 states M(Γm1,m2) ⊇ Um1(I) ∪ Um2(I).
Let m ∈ M(Γm1,m2). Then there exists an edge sequence

(j, m)E . . .E(j1, m1)E(j2, m2)

for some adequate j, j1, j2 ∈ J . With Lemma 6 we conclude that m is connected
to m1 or m2, i.e. m ∈ Um1(I) ∪ Um2(I). Hence M(Γm1,m2) ⊆ Um1(I) ∪ Um2(I).

Finally, by Definition 15 we immediately see Um1(I) = Um2(I) for type 1 and
Um1(I) ∩ Um2(I) = ∅ for type 2.

Corollary 2 gives an explanation of the type numbers of components of Γ . The
ones of type one act on exactly one proper component whereas the ones of type
2 act on exactly two.

Lemma 11. Let V be a lattice with bare Ferrers-graph Γ . Let V (Γ ) =L
.∪ R

be a bipartition of Γ , s.t. the induced relation L̃1 can be extended to a left-order
L1. Furthermore let Γk be a component of Γ of type 1. Then the bipartition

V (Γ ) = ((L \ Lk)∪ Rk)
.∪ ((R \ Rk)∪ Lk)

is again a bipartition inducing a relation L̃2 that can be extended to a left-order
L2 distinct from L1.
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Proof. We have to evidence the following claims

1. ((L \ Lk)∪ Rk)
.∪ ((R \ Rk)∪ Lk) is again a bipartition of the vertex

set of Γ . This is intuitively clear since we just “turned around” one of its
components. See Lemma 4 for a proof.

2. The induced relation L̃2 can be extended to a left-order: We know (see
Lemma 2) that L̃2 is asymmetric and connex since it is induced by a biparti-
tion. Now assume L̃2 not to be transitive. Hence we have three

∧
-irreducibles

satisfying m1 L̃2 m L̃2 m2 L̃2 m1. Since L̃1 is transitive by precondition, let
w.l.o.g. m1 L̃1 m2. In particular this means Γk = Γm1,m2 and m /∈ M(Γk).
Therefore we conclude I(Γk) ⊂ [m ∧ m1 ∧ m2, m ∨ m1 ∨ m2].
On the other hand we observe applying Corollary 1 that m, m1, m2 is a free
triple. Hence m1, m2 are not connected in [m∧m1∧m2, m∨m1∨m2] ⊃ I(Γk).
This contradicts our precondition that Γk is of type 1.

3. L1 �=L2: The component Γk contains at least one edge, i.e. Γk = Γm1,m2 for
some m1, m2 ∈ M . W.l.o.g. let m1 L̃1 m2 and m2 L̃2 m1. This extends to the
respective left-relations, i.e. m1 L1 m2 and m2 L2 m1. Since both left-orders
are asymmetric, we conclude L1 �=L2.

1V

0V

1V

0V

Fig. 2. In a plane diagram, turning a type 1 component results again in a plane di-
agram. The corresponding proper component (depicted diagonally striped) is thereby
reflected.

Lemma 12. Let V be a lattice with Ferrers-graph Γ . Let V (Γ ) =L
.∪ R be a

bipartition of Γ , s.t. the induced relation L̃1 can be extended to a left-order. Fur-
thermore let Γ[v,v] := {Γ1, . . . , Γr} be the set of components of type 2 possessing
the interval [v, v]. Then

1. r =
(

s
2

)

for some natural number s ≥ 2. There exist exactly s m-

components Um1 [v, v], . . . , Ums [v, v] in the interval [v, v].
2. Let K ⊆ {1, . . . , r}. The relation L̂ induced by the bipartition

V (Γ ) = ((L \
⋃

k∈K

Lk) ∪
⋃

k∈K

Rk)
.∪ ((R \

⋃

k∈K

Rk) ∪
⋃

k∈K

Lk) (1)
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can be extended to a left-order if and only if there exists a linear order � on
the

∧
-irreducibles m1, . . . , ms, s.t. mi � mj ⇐⇒ mi L̂ mj holds for all

i, j ∈ {1, . . . , s}.
3. There exist exactly s! bipartitions of the form of Equation (1) whose induced

relations can be extended to a left-order.

Proof. 1. Let Um[v, v] �= Un[v, v] be arbitrary m-components. Then M(Γm,n)
is a subset of [v, v] and therefore [v, v] is the interval of Γm,n. Furthermore
m, n are not connected in that interval, i.e. Γm,n is of type 2. That means
that for each pair of proper components in [v, v], the component Γm,n is an
element of Γ[v,v]. We conclude Γm,n ∈ Γ[v,v] ⇐⇒ Um[v, v] �= Un[v, v] with
Corollary 2. Therefore r is the number of pairs of proper components over

[v, v]. Hence we have s such components, with r =
(

s
2

)

.

2. If such a linear order � does not exist, we find a triple of
∧

-irreducibles
fulfilling m1 L̂ m2 L̂ m3 L̂ m1. Therefore L̂ can not be extended to a left-
order.
Let � be a linear order fulfilling mi � mj ⇐⇒ mi L̂ mj for all pairs of

∧
-

irreducibles mi, mj ∈ [v, v]. We assume to find a triple m1, m2, m3 ∈ M(V)
satisfying m1 L̂ m2 L̂ m3 L̂ m1. By the precondition we know that at
least one of the three

∧
-irreducibles is not an element of [v, v], since they

are ordered linearly. Additionally we know by applying Corollary 1 that
m1, m2, m3 is a free triple. Therefore m1 /∈ [v, v] and m2, m3 ∈ [v, v] is
not the case since then we find v = mi ∧ mj > m ∧ mi ∧ mj. Finally
the case m1, m2 /∈ [v, v] does not occur since then all involved components
Γm1,m2 , Γm1,m3 and Γm2,m3 are not in the set Γ[v,v] and are therefore not
changed. This contradicts our assumption and hence the relation L̂ transi-
tive. With Lemma 2 we conclude that L̂ can be extended to a left-order.

3. This is obvious: there exist s! linear orders on an s-elemental set and therefore
also s! orientations of the involved components of Γ inducing a relation L̂
that can be extended to a left-order.

The previous two lemmas allow to characterize all non-similar plane diagrams
of a lattice:

Theorem 4. Let V be a lattice with the bare Ferrers-graph Γ .

1. If Γ is not bipartite then V is not planar.
2. If Γ is bipartite with κ components of type 1 and μ = μ1+. . .+μt components

of type 2, s.t. μi is the number of components of the set Γ[v,v] for some
interval [v, v] (containing proper components). Then V possesses 2κ ·∏t

i=1 μi!
non-similar plane diagrams.

Proof. 1. This is due to Theorem 2.
2. Follows from Lemma 11 and Lemma 12.

Corollary 3. Let V be a lattice with the bipartite bare Ferrers-graph Γ as pre-
viously described in Theorem 4. Then V possesses 2κ−1 · ∏t

i=1 μi! realizers.
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v

v

1V

0V

v

v

1V

0V

v

v

1V

0V

v

v

1V

0V

v

v

1V

0V

v

v

1V

0V

Fig. 3. In a plane diagram, turning type 2 components results again in a plane diagram
if their respective ordering corresponds to a linear ordering of the involved proper
components. In this picture we have 3 proper components Um1 (horizontally striped),
Um2 (vertically striped) and Um3 (crosshatched). Therefore there exist 3 components
of type 2, namely Γm1,m2 , Γm1,m3 and Γm2,m3 . Of the eight possible orientations of
that components, six supply a plane diagram.

Proof. We concluded from Lemma 1, Proposition 1 and Theorem 3 that every
two plane diagrams of V correspond to exactly one realizer of V. The claim
follows then directly from Theorem 4 and Lemma 1.

In [DDF84] a characterization of posets of dimension 2 possessing a unique re-
alizer is given. Applying our consideration we can derive this result, restricted
to lattices, too:

Corollary 4. [DDF84] Let V be a lattice with the bipartite bare Ferrers-graph
Γ . Then V possesses a unique realizer of size two if and only if Γ is connected.

Proof. Follows immediately from Corollary 3.

Finally we can specify the subset of natural numbers that can be described as
the number of non-similar plane diagrams of a lattice:

Corollary 5. Let α be a natural number. There exists a lattice possessing α
non-similar plane diagrams if and only if α = 0 or α =

∏t
i=1 αi! for natural

numbers α1, . . . , αt.

Proof. The case α = 0 refers to non-planar lattices. The number of non-similar
plane diagrams of a planar lattice is a product of factorials; this is implied by
Theorem 4 if one reminds 2 = 2!.
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Otherwise for any number α =
∏t

i=1 αi!, the lattice consisting of a parallel
composition of lattices Mαi has exactly α plane diagrams: The bare Ferrers-

graph of the lattice Mn
10 possesses

(
n
2

)

components of size 2, which all share

the interval [0Mn , 1Mn ] and has therefore n! plane diagrams. Additionally, the
bare Ferrers-graph Γ of the parallel composition of two lattices V1 and V2 is
exactly the (disjoint) union of the bare Ferrers-graphs of its parts. This is due
to the fact that all pairs of the form (j, m) with j ∈ J(V1) and m ∈ M(V2)
or j ∈ J(V2) and m ∈ M(V1) fulfill either j ≤ m or j ≥ m. Both cases imply
(j, m) /∈ V (Γ ).

3.4 An Algorithm for Finding All Plane Diagrams of a Lattice

With the help of the previous statements we can design an algorithm that spec-
ifies all left-orders, i.e. all non-similar plane diagrams, of a lattice V. it consists
of the following steps:

1. Calculate the bare Ferrers-graph Γ of V.
2. Decide, whether Γ is bipartite. If yes, assign a bipartition L

.∪ R to the
vertices of Γ .

3. Determine all components of Γ .
4. Calculate the interval to each component Γk and determine, whether Γk is

of type 1 or type 2.
5. Subsume the components of type 2 in equivalence classes based on their

interval.
6. Calculate the m-components of each interval [v, v] defining an equivalence

class in terms of step 5.
7. Find all bipartitions inducing a relation L̃ that can be extended to a left-

order.

The algorithm finds exactly all bipartitions that define a left-order. This is
assured by Theorem 4. To gain a plane diagram from that, one can use for
instance the method described in [Zsc05] or more general in [Zsc08].

Unfortunately that algorithm is not polynomial (both in terms of
∧

-irredu-
cibles and of lattice elements) in general due to the last step. We may find up to
|M(V)|! non-similar plane diagrams. The other steps are polynomial however,
as we want to clarify in the following.

1. The first step needs a complexity of O((|J | · |M |)2) by a naive calculation.
2. Finding a bipartition of a graph (V, E) can be done in O(|E|) = O((|J | ·

|M |)2) by a standard algorithm [Jun94].
3. Finding all components of the bare graph can be done in O(|E|) = O((|J | ·

|M |)2) [Jun94].

10 The lattice Mn consists of an n-elemental antichain completed by top and bottom
element.
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4. In a planar lattice every element v can be represented as the infimum of at
most two

∧
-irreducibles and as the supremum of at most two

∨
-irreducibles

[Zsc08]. Therefore the calculation of the interval can be done in O(|M(Γk)|)
for each component Γk, that is O(|M |3) altogether.
The destinction between type 1 and type 2 components can be done easily
in this process, as the following lemma states:

Lemma 13. Let Γm,n be a component of the Ferrers-graph of a lattice and
I(Γm,n) = [v, v].

1. If Γm,n is of type 2 then m ∧ n = v.
2. If Γm,n is of type 1 then there exists an edge {(j1, m1), (j2, m2)} in Γm,n

with m1 ∧ m2 > v.

Proof. 1. Let m ∧ n > v. Then we find a
∨

-irreducible j satisfying j ≤ m ∧ n
and j �≤ v. Hence m and n are connected in [v, v], i.e. Γm,n is not of type 2.

2. The second fact is shown by induction over the length of a shortest connec-
tion p between m and n in [v, v].
If p is of length one, i.e. p = m ≥ j ≤ n then m∧n ≥ j �≤ v, hence m∧n > v.
If p is of length r > 1, i.e. p = n0 ≥ h1 ≤ n1 ≥ . . . ≥ hr ≤ nr (with m = n0

and n = nr) then n1 is connected to m in [m ∧ n, m ∨ n]. We conclude with
Lemma 8 that Γm,n = Γm,n1 or Γm,n = Γn,n1 . In both cases the connections
between m and n1 and n and n1 respectively are shorter than p. Hence we
find a pair of

∧
-irreducibles meeting the requirements of the claim.

5. This step is obviously done in O(μ) where μ ≤ |M |2 is the number of com-
ponents of type 2.

6. Exactly the pairs of
∧

-irreducibles m, n connected by an edge of the form
{(j, m), (h, n)} are in different m-components. Hence this step takes a com-
plexity of O(|M(Γk)|) for each component Γk and O(|M |3) altogether.

By this consideration we observe that the first six steps of the algorithm need a
time complexity of

max{O((|J | · |M |)2), O(|M3|)} ≤ max{O((|J |4), O(|M4|)} = O(|V|2).
See [Zsc05, Zsc08] for the equality between the second and third term.

4 Conclusion

In this work we gave a possibility to specify all plane diagrams and all realizers
of an arbitrary finite lattice. As far as we know, such a characterization was
not done so far. The algorithm described in Section 3.4 allows to calculate the
number of all plane diagrams and the number of all realizers in polynomial time.
More precisely the complexity of the method is O(|V|2) for a lattice V = (V, ≤).
Actually writing down the respective left-orders can not be done in polynomial
time since their number can reach |M(V)|!, where |M(V)| is the number of∧

-irreducibles in V.
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Our approach may be a useful instrument to draw nice diagrams of concept
lattices. Given a context K = (G, M, I), one can search for large subcontexts
K̃ = (G, M̃, Ĩ) (with M̃ ⊆ M and Ĩ = I ∩ G × M̃)), s.t. B(K̃) is planar. One
can provide all non-similar plane diagrams of B(K̃) and add the images of the
principal ideals (μm] of the remaining attributes m ∈ M \ M̃ . There exists an
algorithm [Sch02] that adds a principal ideal and thereby maximizes the conflict
distance11 between inserted and already existing nodes and lines.
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Abstract. In [13] a generalisation of Formal Concept Analysis was in-
troduced with data mining applications in mind, K-Formal Concept
Analysis, where incidences take values in certain kinds of semirings, in-
stead of the standard Boolean carrier set. Subsequently, the structural
lattice of such generalised contexts was introduced in [15], to provide a
limited equivalent to the main theorem of K-Formal Concept Analysis,
resting on a crucial parameter, the degree of existence of the object-
attribute pairs ϕ. In this paper we introduce the spectral lattice of a
concrete instance of K-Formal Concept Analysis, as a further means
to clarify the structural and the K-Concept Lattices and the choice
of ϕ. Specifically, we develop techniques to obtain the join- and meet-
irreducibles of a Rmax,+-Concept Lattice independently of ϕ and try to
clarify its relation to the corresponding structural lattice.

1 Motivation: The Analysis of Confusion Matrices with
K-Formal Concept Analysis

Consider sets of entities G and patterns M with |G| = g ∈ N, |M | = m ∈ N and
a device called a classifier accepting a characterisation of an entity i, 0 ≤ i ≤ g,
normally a vector of features, and returning the index of a pattern j, 0 ≤ j ≤ m .

A confusion matrix or contingency table C ∈ N
g×n tries to capture at a glance

the performance of such classifier: for each classification act we increase Cij by
one, tallying classification hits and errors, which makes C a semiring-valued
matrix. With the aim of better understanding the performance of the classifier
we would like to find a way to analyse the geometry of the spaces associated to
matrices with properties similar to those of C .

For that purpose, in [13] a generalisation of Formal Concept Analysis was
introduced that allows incidences to take values in dioids, or idempotent semi-
rings: for g, m ∈ N, given two sets of objects G = {gi}g

i=1, and attributes
M = {mj}m

j=1, let K, be a complete, idempotent semifield [2,13], and a K-
valued matrix, R ∈ Kg×m, the triple (G, M, R)K is called a K-formal context.
We interpret Rij = λ as “object gi has attribute mj in degree λ” or, dually,
“attribute mj is manifested in object gi to degree λ”.
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��

X̃ =
(
Ỹ
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Fig. 1. Diagrams depicting the structures in the Galois connection of Eq. 1 (left), and
Corollary 10.1, (right)

Now, for each (multiplicatively) invertible ϕ ∈ K, call (K, ϕ) a reflexive idem-
potent semiring if the following maps define a Galois connection, with Y =
K1×g, X = Km×1 and the bracket 〈· | ·〉 : Y × X → K, (y, x) �→ 〈y | x〉 = yRx ,
([3,13] and §2.1 below):

·Rϕ : Y → X yR
ϕ =

∨
{ x ∈ X | 〈y | x〉 ≤ ϕ } (1)

R
ϕ · : X → Y R

ϕx =
∨

{ y ∈ Y | 〈y | x〉 ≤ ϕ } .

in which case we call them the ϕ-polars of the K-formal context (G, M, R)K .
Under such conditions:

1. The images Y = R
ϕ (X ) and X = (Y)R

ϕ are dually inverse complete sub-
semimodules of Y and X , respectively. They are obtained from the original
semimodules by the closure operators: γY : Y → Y, y �→ γY(y) = R

ϕ ((y)R
ϕ )

and γX : X → X, x �→ γX (x) = (R
ϕ (x))R

ϕ .
2. A (formal) ϕ-concept of the formal context (G, M, R)K is a pair (a, b) ∈

Y × X such that aR
ϕ = b and R

ϕ b = a . We call a the ϕ-extent and b the
ϕ-intent of the concept (a, b), and ϕ its (maximum) degree of existence.

3. If (a1, b1), (a2, b2) are ϕ-concepts of a context, they are ordered by the rela-

tion (a1, b1) ≤ (a2, b2) ⇐⇒ a1 ≤ a2 ⇐⇒ b1

op

≤ b2, called the hierarchical
order. The set of all concepts ordered in this way is called the ϕ-concept
lattice, Bϕ(G, M, R)K, of the K-valued context (G, M, R)K .

In [14] a preliminary application of K-Concept Lattices to data mining was
described to characterise the behaviour of n-class classifiers. Two sources of com-
plexity associated to trying to understand such lattices were detected therein:
first, the potentially vast size of K-Concept Lattices, and second, the need to
sweep over parameter ϕ ∈ K to find all possible lattices which prove only slightly
different for similar ϕ’s, pairwise considered.

To overcome the first difficulty the structural lattice of a K-formal context was
introduced in [15] as a sort of skeleton for it. This had the supplementary benefit
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of providing a (limited) second half for the fundamental theorem of K-Concept
Lattices.

Discouragingly, nothing conclusive was found in the same paper with regard
to the role of ϕ in the series of lattices generated by sweeping over the parameter
apart from a non-monotone relationship on the number of concepts.

Therefore, in this paper we introduce another lattice related to a K-Formal
Context which we obtain independently of any ϕ, the spectral lattice of a K-
Formal Context. Furthemore, for gaining a more concrete understanding of the
problem, we apply the results stated so far to the well-known maxplus Rmax,+

and minplus Rmin,+ semirings [1]. This not only provides concrete examples for
all abstract notions we have been manipulating so far but also enables to leverage
powerful techniques specially developed for such semirings.

For that purpose, we introduce these concrete algebras and a notation to be
able to handle expressions mixing them in Section 2.1. With this toolkit we
easily introduce in Section 2.2 the notion of the spectrum of any square, Rmax,+-
valued matrix. As the main contribution of this paper, in Section 3 we find
dually order isomorphic lattices related to the spectra of the projectors onto
the image subsemimodules of the Galois connection, Y and X , implied in the
main theorem. Finally, in Section 4 we show a more involved application to the
analysis of confusion matrices.

2 Rmax,+ Spectral Theory

2.1 Rmax,+ and Rmin,+ Algebra

Idempotent semirings. A semiring1 S = 〈S, ⊕, ⊗, ε, e〉 is an algebra whose
additive structure, 〈S, ⊕, ε〉, is a commutative monoid and whose multiplicative
structure, 〈S\{ε}, ⊗, e〉, is a monoid whose multiplication distributes over addi-
tion from right and left and whose neutral element w.r.t. ⊕ is absorbing for ⊗,
i.e. ∀a ∈ S, ε ⊗ a = ε . On any semiring S left and right multiplications can
be defined: La : S → S, b �→ La(b) = ab, and Ra : S → S, b �→ Ra(b) = ba . A
commutative semiring is one whose multiplicative structure is commutative.

A semifield K is a semiring whose multiplicative structure 〈K\{ε}, ⊗〉 is a
group, that is, there is an operation, ·−1 : K\{ε} → S\{ε} such that ∀a ∈
K, a ⊗ a−1 = a−1 ⊗ a = e . For commutative semifields whose multiplicative
structure is a commutative group we have (a ⊗ b)−1 = a−1 ⊗ b−1 .

An idempotent semiring or dioid (for double monoid) D is a semiring whose
addition is idempotent, ∀a ∈ D, a ⊕ a = a , that is, whose additive struc-
ture 〈D, ⊕, ε〉 is an idempotent semigroup . Compared to a ring, an idempotent
semiring crucially lacks additive inverses. All idempotent commutative monoids
〈D, ⊕, ε〉 are endowed with a natural order, ∀a, b ∈ D, a  b ⇐⇒ a ⊕ b = b ,
which turns them into ∨-semilattices with least upper bound defined as a ∨ b =
a ⊕ b . Moreover, the neutral element for the additive structure of semiring D is
the infimum for this natural order, ε = ⊥ . Hence all dioids are sup-semilattices
1 Henceforth S will be a generic semiring, K a semifield, and D an idempotent semiring.
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〈D, 〉 with a bottom element. A dioid whose multiplicative structure is a group
is an idempotent semifield. The formula for the infimum of two elements in such
case was already given by Dedekind [4]: the meet law is: a∧b = a⊗(a⊕b)−1⊗b ,
hence idempotent semifields are already lattices.

A semiring S is complete, if for any index set I including the empty set, and
any {ai}i∈I ⊆ S the (possibly infinite) summations

⊕
i∈I ai are defined and the

distributivity conditions:
(⊕

i∈I ai

) ⊗ c =
⊕

i∈I (ai ⊗ c) and c ⊗ (⊕
i∈I ai

)
=⊕

i∈I (c ⊗ ai), are satisfied. Note that for c = e the above demand that infinite
sums have a result. In complete semirings one can define the Kleene star of an
element, a ∈ S, a∗ =

∑∞
i=0 ai, and also a+ =

∑∞
i=1 ai, with a+ = a ⊗ a∗ and

a∗ = e ⊕ a+ .
A dioid D is complete, if it is complete as a naturally ordered set 〈D, 〉

and left (La) and right (Ra) multiplications are lower semicontinuous, that is
join-preserving.

Example 1 (The Maxplus and Minplus semifields)

1. The Maxplus semifield, Rmax,+ = 〈 R ∪ { −∞ }, max, +, −∞, 0 〉 with in-
verse ·−1 : =−· is an idempotent commutative semifield. It is incomplete be-
cause its bottom has no inverse: ∀a ∈ R ∪ { −∞ }, a + (−∞) = −∞ �= 0 .

2. The Minplus semifield, Rmin,+ = 〈 R ∪ { ∞ }, min, +, ∞, 0 〉 is an idempo-
tent commutative semifield, with the same inverse as the previous example.
It is incomplete for a similar reason: ∀a ∈ R ∪ { ∞ }, a + ∞ = ∞ �= 0 .

Top Completion of idempotent semifields ([8,10,11,12]). A non-trivial
idempotent semifield D �= {ε, e} (that is, non-isomorphic to B ) cannot contain
a top element, �, hence it cannot be a complete dioid. In [14] a procedure is
described whereby one can obtain from any (incomplete) idempotent semiring
D a completion as follows.

For any lattice-ordered group G = 〈G, , ⊗〉: adjoin two elements ⊥ and � to
G to obtain G = G ∪ {⊥, �} and extend the order to G as ⊥  a  �, ∀a ∈ Ḡ .

Then extend the product to two different operations, upper,
�⊗ , and lower, ⊗

�
,

multiplications:

a ⊗
�

b =

⎧
⎪⎨

⎪⎩

⊥ if a, b ∈ G ∪ {⊥, �}, with a = ⊥, or b = ⊥ .
� if a, b ∈ G ∪ {�}, with a = �, or b = � .
a ⊗ b if a, b ∈ G .

(2)

a
�⊗ b =

⎧
⎪⎨

⎪⎩

� if a, b ∈ G ∪ {⊥, �}, with a = �, or b = � .
⊥ if a, b ∈ G ∪ {⊥}, with a = ⊥, or b = ⊥ .
a ⊗ b if a, b ∈ G .

(3)

to obtain the structure G = 〈G, ,
�⊗, ⊗

�
〉, known as the canonical enlargement

of G = 〈G, , ⊗〉 . In this structure, ⊗
�

and
�⊗ are associative and commutative
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over G , as the original ⊗ was over G , and the isotony of the product with
respect to the natural order extends to G . Furthermore, if e is the unit element

of 〈G, ⊗〉, it is similarly the unit of 〈G,
�⊗〉 and 〈G, ⊗

�
〉 . The top completion

of a dioid D is another dioid D = 〈D, ⊕
�
, ⊗

�
, ε, e〉 where: D = D ∪ {�} and in

which ⊗
�

coincides with its definition above when D is considered as bearing

a lattice-ordered (multiplicative semi-)group, and we extend ⊕ with the extra
top-element:

a ⊕
�

b =

{
� if a = � or b = � .
a ⊕ b, if a, b ∈ D .

(4)

Given an (incomplete) idempotent semifield D, on its top enlargement as
above, D , we extend the notation for the inverse with the following conventions:
ε−1 = �, �−1 = ε . In that way we have two related completed idempotent
semifield structures:

– a complete lattice for the natural order 〈D, 〉, the one we have been focusing
on, D = 〈D, ⊕

�
= ∨, ⊗

�
, ⊥, e〉, and

– a complete lattice for the dual of the natural order, 〈D, d〉 = 〈D, �〉 ,

Dd
= 〈D,

�⊕ = ∧,
�⊗, �, e〉 where the meet is defined (on D) by Dedekind’s

formula and the definition of
�⊗ follows equation (3).

Example 2. Using the procedure above, we have that:

– The top completion of Rmax,+ is Rmax,+ = 〈R ∪ {−∞ ∞}, max, +
�
, −∞, 0〉,

the completed Maxplus semifield.

– The top completion of Rmin,+ is Rmin,+ = 〈R ∪ {−∞, ∞}, min,
�
+, ∞, 0〉 the

completed Minplus semifield .

Note that in this notation we have −∞ +
�

∞ = −∞ and −∞ �
+∞ = ∞, which

solves several issues in dealing with the separately completed dioids, as promised.

In the completed structure, which we prefer to denote by K, we have the fol-
lowing De Morgan-like relations between the multiplications, their residuals and
inversion:

Proposition 1 ([12], lemma 2.2). In the top enlargement K of any commu-
tative semifield K we have:

(a ⊕
�

b)−1 = a−1
�⊕ b−1 (a

�⊕ b)−1 = a−1 ⊕
�

b−1 (5)

(a ⊗
�

b)−1 = a−1
�⊗ b−1 (a

�⊗ b)−1 = a−1 ⊗
�

b−1
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If K is the completion of an idempotent semifield, its upper and lower residuals:

a ⊗
�

b  c ⇔ b  a \
�
c ⇔ a  c /

�
b a

�⊗ b d c ⇔ b d a
�
\ c ⇔ a d c

�
/ b (6)

can be expressed in terms of the multiplications and inversion as:

a \
�
c = a−1

�⊗ c = (a ⊗
�

c−1)−1 c /
�
a = c

�⊗ a−1 = (c−1 ⊗
�

a)−1 (7)

a
�
\ c = a−1 ⊗

�
c = (a

�⊗ c−1)−1 c
�
/ a = c ⊗

�
a−1 = (c−1

�⊗ a)−1

Although associativity of ⊕
�

with respect to
�⊕ would be desirable, the farther

we can get is:

Proposition 2 ([8], proposition 3.c). For all x, y, z ∈ K:

(x
�⊕ y)⊕

�
z ≤ x

�⊕(y ⊕
�

z) (8)

Example 3 (Residuation in Rmax,+, Rmin,+). The residuals of +
�

and
�
+ are:

a \
�
c : =(−a)

�
+ c = −(a +

�
(−c)) c /

�
a : = c

�
+(−a) = −((−c)+

�
a)

a
�
\ c : =(−a)+

�
c = −(a

�
+(−c)) c

�
/ a : = c +

�
(−a) = −((−c)

�
+ a)

Idempotent semimodules of matrices. A semimodule over a semiring is
defined in a similar way to a module over a ring [3,7,6]: a left S-semimodule, Y
over a semiring S is an additive commutative monoid 〈Y, ⊕, εY〉 endowed with a
map (λ, y) �→ λ � y such that ∀λ, μ ∈ S, y, z ∈ Y . Following the convention of
dropping the symbols for the scalar action and semiring multiplication we have:

(λμ)y = λ(μy) εS � y = εY (9)
λ(y ⊕ z) = λy ⊕ λz eS � y = y

The definition of a right S-semimodule X follows the same pattern with the
help of a right action, (λ, x) �→ x � λ and similar axioms to those of (9). A
(K, S)-semimodule is a set M endowed with left K-semimodule and a right S-
semimodule structures, and a (K, S)-bisemimodule a (K, S)-semimodule such
that the left and right multiplications commute. For a left S-semimodule, Y, the
left and right multiplications are defined as: LS

λ : Y → Y, y �→ LS
λ(y) = λy, and

RY
y : S → Y, λ �→ RY

y (λ) = λy . And similarly, for a right S-semimodule.

Example 4. Each semiring, K, is a left (right) semimodule over itself, with the
semiring product as left (right) action. Therefore, it is a (K, K)-bisemimodule
over itself, because both actions commute by associativity. Such is the case for
the Boolean (B, B)-bisemimodule, the Maxplus and the Minplus bisemimodules.
These are all complete and idempotent.
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Example 5 (Finite matrix semirings and semimodules). Let S be a semi-
ring. Mn(S) = 〈Sn×n, ⊕, ⊗, E , E〉 is semiring of (square) matrices over S with
Sn×n denoting the set of square matrices over the semiring, matrix operations
(A⊕B)ij = Aij⊕Bij , 0 ≤ i, j ≤ n and (A⊗B)ij =

⊕n
k=1 Aik ⊗ Bkj , 0 ≤ i, j ≤ n,

null element the matrix E , Eij = ε, 0 ≤ i, j ≤ n and unit E, Eii = e, 0 ≤ i ≤ n,
Eij = ε, 0 ≤ i, j ≤ n, i �= j . Such semirings are not commutative in general
even if S is, except for M1(S) = S . They are complete and idempotent if S is,
in which case, the Kleene star of a square matrix, A ∈ Mn(S), can be calculated
efficiently: A∗ = E ⊕ A ⊕ A2 . . . An .

For g, m ∈ N, the semimodule of finite matrices Mg×m(S) = 〈Sg×m, ⊕, E〉 is
a (Mg(S), Mm(S))-bisemimodule, with matrix multiplication-like left and right
actions and componentwise addition. Special cases of it are:

– the bisemimodules of column vectors Mm×1(S) and row vectors M1×g(S) .
– the semiring of square matrices Mg(S) with g = m , also a bisemimodule.

If S ≡ D is idempotent (resp. complete), then all are idempotent (resp. complete)
with the component-wise partial order as their natural order. If D is a completed
semifield, then matrix multiplications read for appropriate A, B and summations:

(A⊗
�

B)ij =
n⊕

k=1

Aik ⊗
�

Bkj (A
�⊗B)ij =

n⊕

k=1

Aik

�⊗Bkj

For the completed semifields Rmax,+ and Rmin,+, we have:

(A⊗
�

B)ij : =
n

max
k=1

(Aik +
�
Bkj) (C

�⊗D)ij : =
n

min
k=1

(Cik

�
+Dkj)

Residuation in matrix semimodules. A left D-semimodule Y over an idem-
potent semiring D inherits the idempotent law: ∀v ∈ Y, v ⊕ v = v, which
induces a natural order on the semimodule: ∀v, w ∈ Y, v ≤ w ⇐⇒ v ⊕ w = w ,
whereby it becomes a ∨-semilattice, with εY its minimum. In the following we
systematically equate left (respectively right) idempotent D-semimodules and
row (respectively column) semimodules over an idempotent semiring D . When
D is a complete idempotent semiring, a left D-semimodule Y is complete (in its
natural order) if it is complete as a naturally ordered set and its left and right
multiplications are lower semicontinuous. Trivially, it is also a complete lattice,
with join and meet operations given by: v ≤ w ⇐⇒ v∨w = w ⇐⇒ v∧w = v .
This extends naturally to right- and bisemimodules.

As in the semiring case, because of the natural order structure, the actions
of idempotent semimodules admit residuation: given a complete, idempotent
left D-semimodule, Y, we define for all y, z ∈ Y , λ ∈ D the residuals are:
(
LD

λ

)#
: Y → Y,

(
LD

λ

)#
(z) = λ\z and

(
RY

y

)#
: Y → D,

(
RY

y

)#
(z) = z/y and

likewise for a right semimodule.
If D is idempotent (resp. complete), then finite matrix semimodules are idem-

potent (resp. complete) with the componentwise partial order as their natural



Spectral Lattices of Rmax,+-Formal Contexts 131

order. Therefore we can define residuated operations as ([2], p. 196): let D be a
complete dioid in which ∧ exists, and A ∈ Dm×n, B ∈ Dm×p, C ∈ Dn×p, then
their left, A\B, and right B/C residuals are:

(A \ B)ij =
m∧

k=1

(Aki \ Bkj) (B / C)ij =
p∧

k=1

(Bik / Cjk) (10)

For K a completed idempotent semifield as in subsection 2.1, the left and right

residuals of ⊗
�

and
�⊗ are (with the appropriate summations):

(A \
�
B)ij =

m⊕

k=1

(

A−1
ki

�⊗Bkj

)

(A
�
\ B)ij =

m⊕

k=1

(

A−1
ki ⊗

�
Bkj

)

(11)

(B /
�
C)ij =

p⊕

k=1

(

Bik

�⊗C−1
jk

)

(B
�
/ C)ij =

p⊕

k=1

(

Bik ⊗
�

C−1
jk

)

To pave the way for some results in Section 3 we have:

Proposition 3 (Adapted from [5], §5.3.3 and 5.4). For u, v, w in the appro-
priate S-semimodules, (u \

�
v)⊗

�
w ≤ u \

�
(v ⊗

�
w) and equality holds when w ∈ S

is invertible or w ∈ Mg×m(S) has at least one finite component in every row
and column.

Definition 6 (Conjugations). For Y ∼= K1×n, X ∼= Kn×1 left and right semi-
modules, respectively, over an idempotent reflexive semifield (K, ϕ) and bracket
〈· | ·〉 : Y ×X → K, 〈y | x〉 = y ⊗

�
x [13] we define a conjugation to be the Galois

connection obtained from the maps in eq. (1): y� = y \
�
eD , �x = eD /

�
x, and

we write simply: (·�,� ·) : Y ⇀↼ X . For any other invertible element ϕ ∈ K we

have the ϕ-conjugations: y�
ϕ = y \

�
ϕ = y \

�
(eD

�⊗ϕ) = y� �⊗ϕ and �
ϕ x = ϕ

�⊗ �x .

For instance, the conjugations in Rmax,+ are: y� : = −yt,� x : = −xt , where ·t :
Y → Y stands for transposition. We also define without further ado: y−1 =
(yt)� = (y�)t and similarly for right semimodules.

For adequate invertible unitary matrices, EMn(D), (Mn(D), EMn(D)) is re-
flexive hence the conjugations of Def. (6) exist for R ∈ Dg×m:

R� = R \
�
EMg(D)

�R = EMm(D) /
�
R (12)

and we can write analogues of Prop. 1 compactly:

Proposition 4. In the top completion, D, of an idempotent semifield the fol-
lowing De Morgan-like laws hold:

(A⊕
�

B)� = A� �⊕ B� (A
�⊕B)� = A� ⊕

�
B� (13)

(A⊗
�

B)� = B� �⊗ A� (A
�⊗B)� = B� ⊗

�
A�
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the following residuation laws hold:

A \
�
C = A� �⊗C = (C� ⊗

�
A)� A

�
\ C = A� ⊗

�
C = (C� �⊗A)� (14)

C /
�
A = C

�⊗A� = (A⊗
�

C�)� C
�
/ A = C ⊗

�
A� = (A

�⊗C�)�

and similarly for left conjugates.

2.2 Spectra of Reducible and Irreducible Matrices

Graphs related to a matrix. Consider a digraph Γ = (V, E), with V a set of
vertices and E ⊆ V 2 a set of edges. If there is a walk from a vertex i to a vertex j
in Γ we say that i has access to j, i � j. This relation is transitive and reflexive.
The access equivalent classes of Γ are the equivalence classes of the transitive,
symmetric and reflexive closure of the access relation, i � j ⇔ i � j ∧ j � i .
Γ is strongly connected if it only has one class. When C, C′ ∈ V/ �, we say
that a class C has access to a class C′, if some vertex of C has access to some
vertex of C′, and we say that it is final if it has only access to itself.

Now consider a matrix with values in a semiring, A ∈ Dn×n. The digraph
Γ (A) associated to this matrix consists of the set of vertices V = {1, . . . n} and a
set of edges, E = {(i, j) | Aij �= εD} . The classes of a matrix A are the (access
equivalent) classes of Γ (A), hence we say that the matrix A is irreducible if Γ (A)
is strongly connected, and reducible otherwise.

A walk in Γ (A) is a sequence of edges pairwise sharing an element w =
(v1, v2), (v2, v3), . . . , (vk−1, vk) . The weight of a walk is |w|A = Av1v2 ⊗ Av2v3 ⊗
. . . ⊗ Avk−1vk

, and its length is |w| = k − 1 . Call a cycle a walk with v1 = vk

and its cycle mean the ratio of weight-to-length. Therefore the maximal cycle
mean, ρmax(A), is the maximum of the cycle means over all cycles of Γ (A):

ρmax(A) = max
c cycle of Γ (A)

|c|A
|c| (15)

A cycle that attains such a maximum is called a critical cycle. Call the union of
the critical cycles the critical digraph, Γc(A), and its vertices, the critical vertices,
Vc . Also, call the (access equivalent) classes of the critical digraph Γc(A) the
critical classes of A.

Eigenvalues and eigenvectors in idempotent semimodules. Let D be a
completed dioid. An eigenvector of A ∈ Dn×n is a vector x ∈ Dn\{ε} such
that A⊗

�
x = λ⊗

�
x for some λ ∈ D which is called the (geometric) eigenvalue

corresponding to x. If λ is an eigenvalue of A then the eigenspace of A for the
eigenvalue λ is the set of vectors, eig(A, λ) = {x ∈ D

n | A⊗
�

x = λ⊗
�

x}.

To put a concrete example, the Rmax,+ spectral theory shows notorious dif-
ferences with normal spectral theory. For D : = Rmax,+ the eigenvalue equation
becomes:
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max
1≤j≤n

{Aij +
�

xj} = λ+
�

xi, ∀1 ≤ i ≤ n (16)

Now, if we define the normalised matrix as Ã = ρmax(A)−1A when D is a
semifield, the following facts all refer to irreducible A ∈ R

n×n
max,+ [1]:

Property 7 (Spectra of irreducible Rmax,+-matrices)

1. For any matrix A, ρmax(A) is an eigenvalue of A, and any eigenvalue of A
is less than or equal to ρmax(A) .

2. An eigenvalue of A associated with an eigenvector in R
n

max,+ must be equal
to ρmax(A).

3. If A is irreducible, then ρmax(A) > ε and it is the only eigenvalue of A .
4. For all critical vertices i ∈ Vc(A), the column Ã∗

·i is an eigenvector of A for
the eigenvalue ρmax(A).

5. If i and j belong to the same critical class, then Ã∗
·i = Ã∗

·j ⊗
�

Ã∗
ji .

6. (Eigenspace for the eigenvalue ρmax(A)). Let {Ct}s
t=1 be the set of critical

classes of A. Arbitrarily select one vertex it from each class. The columns
Ã∗

·is
, t = 1 . . . s span the eigenspace of A for the maximal cycle mean ρmax(A),

eig(A, ρmax(A)) = span
(
{Ã∗

·is
}s

t=1

)
.

The most notable difference here is the existence of a single eigenvalue ρmax per
irreducible matrix. In fact in such situations we drop the specification of the
eigenvalue from the eigenspace notation eig(A) = eig(A, ρmax) thereby implying
that A is irreducible.

Now, denote by A[C, C] the submatrix of A selected by the vertices in class
C and call a class C of A basic if ρmax(A[C, C]) = ρmax(A) . The following facts
relate to reducible matrices2:

Property 8 (Spectra of reducible Rmax,+-matrices)

1. A scalar λ �= ε is an eigenvalue of A if and only if there is at least one class
of A such that ρmax(A[C, C]) = λ and ρmax(A[C, C]) ≥ ρmax(A[C′, C′]) for
all classes C′ that have access to D . The spectrum of A, spec(A), is the
set of such eigenvalues, which is essentially the union of the spectra of some
of its irreducible blocks.

2. A ∈ R
n×n has an eigenvector in R

n iff all its final classes are basic.
3. (Eigenspace for eigenvalue λ.) Let {Ck}m

k=1 denote all the classes of A such
that if ρmax(A[Ck, Ck]) = λk then ρmax(A[C′, C′]) ≤ λk for all classes C′

that have access to Ck . For every 1 ≤ k ≤ m, let {Ck
t }sk

t=1 denote the
critical classes of the matrix A[Ck, Ck] . For each 1 ≤ k ≤ m, 1 ≤ t ≤ sk,
choose an arbitrary jk,t ∈ Ck

t . Then the columns of the λ-normalized columns
eig(A, λ) = span({(λ \A)∗·jk,t

| 1 ≤ k ≤ m, 1 ≤ t ≤ sk, jk,t ∈ Ck
t }) span the

eigenspace of A for λ and any spanning family of this eigenspace contains a
scalar multiple of every one of these.

2 We mention in passing that there are algorithms for transforming a reducible matrix
into an upper or lower block-triangular form.
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Again the extra requisites on the spectral eigenvalues related to the order of the
reachable classes is a deviation from “standard” spectral theory.

Calculating such spectra is specially easy in a certain kind of matrices:

Definition 9. Let A ∈ Mn(Rmax,+). After [9], we call A definite if its maximal
cycle mean is ρmax(A) = e and its diagonal entries equal Aii = e .

We have the following:

Proposition 5 ([9], prop. 7). If A is a definite matrix, then:

1. It has a unique eigenvalue λ = e = ρmax(A) .
2. eig(A) = span(A∗) .

The important thing about definite matrices is that the very complex eigenvalue-
eigenvector calculation is reduced to the calculation of a star operation. We
prove in passing the next result to be used later implying that the left and right
residuals of any rectangular matrix are halfway to being a definite matrix:

Proposition 6. Let K be the top completion of an idempotent semifield. For
R ∈ Mg×m(K), the diagonal entries of R \

�
R ∈ Mm(K) and R /

�
R ∈ Mg(K)

equal e iff at least some row, or column of R is finite.

Proof. Call P = R \
�
R ∈ Mm(D) . Recall that R \

�
R = R� �⊗R, so for each

1 ≤ i ≤ m, Pii =
�⊕

1≤i≤m R�
ij

�⊗ Rji . Now, R�
ij = R−1

ji . Hence, for Rji ∈ D
this means R�

ij

�⊗Rji = R−1
ji

�⊗Rji = e , and for Rji ∈ {⊥, �} , R−1
ji

�⊗Rji = � .
If at least one of the elements is finite, then the total sum, being an inf, becomes
e . The proof for R /

�
R is the same. ��

3 The Spectral Lattice of an Rmax,+-Context

Consider the right semimodules Y ∼= K
g×1

, X ∼= K
m×1

and the bracket
〈y | x〉 = yt ⊗

�
R ⊗

�
x where we have switched to consider columns as vectors

as customary in data mining and signal processing applications3. We can give
algebraic expressions for the ϕ-polars in the completed semifield:

Proposition 7. The ϕ-polars have the algebraic form: yR
ϕ = R� �⊗ y−1

�⊗ ϕ ,
R
ϕx = ϕ

�⊗x� �⊗ R� .

Proof. This is straightforward using the maxplus/minplus algebra developed in
section 2.1:

yR
ϕ = (yt ⊗

�
R) \

�
ϕ R

ϕx = ϕ /
�
(R ⊗

�
x) (17)

= R� �⊗ y−1
�⊗ϕ = ϕ

�⊗x� �⊗ R�

3 This will only entail minimal tinkering with the notation.
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This suggests that we call x̃ = x
�
/ϕ = x⊗

�
ϕ� and ỹt = ϕ

�
\ yt = ϕ� ⊗

�
yt,

(ỹ = y
�
/ϕt = yt ⊗

�
ϕ−1), so that the normalised semimodules (wrt. ϕ) are:

Ỹt
= {ỹt | yt ∈ Yt} Ỹ = {ỹ | y ∈ Y} X̃ = {x̃ | xt ∈ X} (18)

Then we have the following:

Proposition 8 (Decoupled eigenequations)

1. With PYt = R
�⊗R� ∈ Mg(Rmax,+), we have ỹt ⊗

�
PYt = ỹt .

2. With PX = R� �⊗R ∈ Mm(Rmax,+) we have PX ⊗
�

x̃ = x̃ .

3. With PY = (PYt)t = (R
�⊗R�)

t

= R−1
�⊗Rt we have PY ⊗

�
ỹ = ỹ .

Proof The equation for the concepts can be written as:

R
ϕx = yt yR

ϕ = x (19)

Therefore, equating Eqs. (17) and (19):

ϕ
�⊗ x� �⊗ R� = yt R� �⊗ y−1

�⊗ϕ = x

hence from x� = ϕ� ⊗
�

yt ⊗
�

R and y−1 = R ⊗
�

x⊗
�

ϕ� we get:

ϕ
�⊗(ϕ� ⊗

�
yt ⊗

�
R)

�⊗ R� = yt R� �⊗(R ⊗
�

x⊗
�

ϕ�)
�⊗ϕ = x

whence, for invertible ϕ:

(ϕ� ⊗
�

yt ⊗
�

R)
�⊗ R� = ϕ

�
\ yt R� �⊗(R ⊗

�
x⊗

�
ϕ�) = x

�
/ ϕ

(ỹt ⊗
�

R)
�⊗ R� = ỹt R� �⊗(R ⊗

�
x̃) = x̃

Finally, by Prop. 3 we have:

ỹt ⊗
�
(R

�⊗ R�) = ỹt (R� �⊗ R)⊗
�

x̃ = x̃ (20)

For the third proposition we write PY = (PYt)t = (R
�⊗R�)

t

= R−1
�⊗Rt and

then transpose the whole equation for ỹt in Eq. (20). ��
Note that although it is apparently a major unbalance, the eigenvalue equation
for PY allows us to write the very balanced:

[
R−1

�⊗Rt 0g×m

0m×g R� �⊗R

]

⊗
�

[
ỹ
x̃

]

=
[
ỹ
x̃

]

(21)



136 F.J. Valverde-Albacete and C. Peláez-Moreno

For ϕ� = ϕ−1 and z̃ = [ỹt x̃t]t = z ⊗
�

ϕ� we can write C ⊗
�

z̃ = z̃, and call it the

extended eigenvalue equation, which shows that the normalised formal concepts
are also the fixpoint of some sort of matrix operator.

Another practical advantage of using PY is to be able to refer all results to
column semimodules. This is what we will do hence.

Consider now K = Rmax,+. With regard to the eigenspaces of these projections
we have the following proposition:

Proposition 9. PY and PX are definite matrices.

Proof. The proof that they are matrices with their diagonals set to eD is in
Prop. 6. Now consider any of the equations in Proposition 8. These are clearly
equations for the eigenvalue λ = eD. From Property 7.2 this eigenvalue has to
be ρmax. ��
Proposition 10. 1. PY and PX are closure operators in matrix form over their

respective normalised semimodules.
2. PY = P ∗

Y and PX = P ∗
X .

Proof. From Props. 2 and 2, eig(Yt
, ρmax) = span(

(
Yt

)∗
) = span(X ). ��

Then we have the following easy corollaries:

Corollary 11 (The spectral Galois connection)

1. PYt and PX are the closure operators in matrix form of the Galois connection
((·)R

ρmax
, R
ρmax

(·)) : Ỹ ⇀↼ X̃
2. The subsemimodule Ỹ is the eigenspace eig(PY) = span(PY) and the sub-

semimodule X̃ is the eigenspace eig(PX ) = span(PX ).

Proof. For the first subproposition, consider the polars of the generic Galois

connection and rewrite: yR
ϕ = R� �⊗(ϕ� ⊗

�
y)� = (ỹt ⊗

�
R)

�
\ e = ỹR

e = ỹR
ρmax

, and

similarly n R
ϕx = R

ρmax
x̃ . By ([3], Th. 42) this is a Galois connection, whose

closure operators by the proof of Proposition 8 are exactly the matrices pointed
to above. For the second proposition, combine Propositions 5.2 and 10.2 to get
the closure lattices, Ỹ and X̃ . ��
This suggests that ϕ = ρmax = e for both matrices is a special choice, so we give
it its right status:

Definition 10. For a set G of objects and a set M of attributes, of widths
g, m ∈ R respectively, with R ∈ Mg×m(Rmax,+) building the Rmax,+-formal
context K = (G, M, R)

Rmax,+
the spectral lattice, Bρmax(G, M, R)

Rmax,+
is the

lattice of ρmax-formal concepts of the connection ((·)R
ρmax

, R
ρmax

(·)) : Ỹ ⇀↼ X̃
Indeed, this is the Galois connection depicted to the right of Figure 1. The next
proposition paves the way for a more familiar representation, the structural
lattice:
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Proposition 12. 1. The join irreducibles J
(
Bρmax(G, M, R)

Rmax,+

)
are the

pairs (ai, bi) such that i ranges over the columns of PY and bi = (ai)R
ρmax

.

2. The meet irreducibles M
(
Bρmax(G, M, R)

Rmax,+

)
are the pairs (aj , bj) such

that j ranges over the columns of PX and aj = R
ρmax

(bj) .

Proof. The Galois connection between the closure lattices Ỹ and X̃ ensures that
the columns of each of the projectors are the basis of the eigenspaces, that
is the join-irreducibles of each lattice. The join-irreducibles of Ỹ generate the
join-irreducibles of Bρmax(G, M, R)

Rmax,+
by applying the polars of the Galois

connection. However, because of the inversion for the second domain, the join-
irreducibles of X̃ generate the meet-irreducibles of Bρmax(G, M, R)

Rmax,+
. ��

Once we have both meet- and join-irreducibles it is easy to obtain the structural
(concept) lattice of the spectral lattice by the procedure described in [13].

4 Application: The Analysis of Confusion Matrices

To illustrate the calculations behind the spectral lattice we retake now the prob-
lem of analysing confusion matrices. Figure 2 illustrates one such matrices with
the usual hypothesis in pattern recognition, g = m .

For simplification’s sake, consider every row and column in C to have at
least one non-null entry and call DG and DM those diagonal matrices such
that their diagonal elements are the sums of rows and columns respectively,
(DG)ii =

∑m
j=1 Cij , (DM )jj =

∑g
i=1 Cij , (DG)ij = (DM )ij = 0, i �= j . There-

fore, DG, DM are invertible so the matrix R = log[(DG)−1C(DM )−1] is defined
and has entries in R ∪ {−∞} . In this case, R happens to be irreducible.

M =

⎡

⎣
5 3 0
2 3 1
0 2 11

⎤

⎦ R =

⎡

⎣
3.821457e 2.852357 ε

−0.7378621 2.272438 −5.856696
ε −1.249387 2.796319

⎤

⎦ · 10−01

Fig. 2. The confusion matrix, M , its version as a Rmax,+ matrix, R

Now consider PY and PX as per the definitions in Eq. (8). These are both
definite and irreducible hence their eigenvectors are all of their columns. The
structural spectral Formal Context and its Concept Lattice are shown in Fig.
3. Interestingly, this trivial lattice already justifies the asymmetric treatment of
real and recognised classifier tags. It questions Pattern Recognition approaches
to confusion matrix analysis that impose a symmetrical structure on these.

As a further example we introduce the (abridged) analysis of the performance
of an automatic speech recognizer for Spanish in figure (4). Its confusion matrix
(and Rmax,+-Formal Context), illustrates the baseline performance for a certain
type of recognition technology: most of the vowels can be adequately decoded,
the less so nasals. However, approximants (soft /b/,/d/,/g/ in vocalic context)
cannot be told apart in the spectral lattice at all, a weakness of this recognizer.
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dog? cat? rabbit?

Dog × ×
Cat ×
Rabbit ×

rabbit?

Rabbit dog?

Dog

cat?

Cat

Fig. 3. Structural spectral context and Concept lattice for matrix R in Figure 2

Fig. 4. Confusion matrix for an automatic speech recognizer for Spanish. Objects: real
phonemes; attributes: recognised phonemes (SAMPA). /J/ stands for the phoneme of
letter “ñ”.

5 Conclusion

In this paper, we have tried to justify the importance of a particular value of the
exploration parameter ϕ to obtain structural lattices [15] for the concrete case
of Rmax,+-Formal Concept Analysis, viz, the case where we consider it to be an
eigenvalue of the projectors onto the closure lattices in the Galois connection.
The latter can be readily obtained as the left and right residuals of the Rmax,+-
valued incidence in the completed semiring, which makes the spectral estimation
a very light process computationally speaking.
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Abstract. In this paper we study the problem of generating all keys of
a formal context as well as a hypergraph. We show that computing the
maximum size of a key is NP-complete. Consequently, there is no polyno-
mial time algorithm that decides if a hypergraph is k-conformal, unless
P=NP. We also present an algorithmic framework based on decompo-
sition to enumerates all keys of a hypergraph. As example we propose
a decomposition of a hypergraph into conformal hypergraphs. Comput-
ing a minimal decomposition of an arbitrary hypergraph into conformal
hypergraphs remains open in this paper.

1 Introduction

In Formal Concept Analysis (FCA), keys and implications are viewed as infor-
mation implicitly present in a context. Extract a such information represents a
crucial part in KDD process and it is strongly connected to minimal transversals
of a hypergraph [1].

Generating all keys of a context or all minimal transversals of a hypergraph
is a very popular problem. More recently, keys and minimal transversals have
been intensively studied in several areas, such as database theory, artificial in-
telligence, machine learning, graph theory [1, 2, 3]. This problem has two inde-
pendent sources of complexity; (1) The number of keys can be exponential in
the size of the input, and (2) Time complexity needed for the generating algo-
rithm is unknown. The best known algorithm is due to Fredman and Khachiyan
[4], which has a quasi-polynomial time complexity in the size of input and
output.

Several authors aimed at identifying special cases for which minimal transver-
sals (or keys) can be generated in polynomial total time. For example bounded
edge-intersections [5], bounded dimension [6], acyclicity [1]. (see also [3, 7, 8]).
In [9] authors design an efficient algorithm to compute minimal transversal of
k−conformal hypergraphs when k is constant.

In this paper we study the problem of generating all keys of a context as
well as a hypergraph. We show that computing the maximum size of a key
is NP-complete; as a consequence there is no polynomial time algorithm that
decides if a hypergraph is k-conformal, unless P=NP. We introduce the notion

R. Medina and S. Obiedkov (Eds.): ICFCA 2008, LNAI 4933, pp. 140–149, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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of conformal decomposition of a hypergraph into conformal hypergraphs. Then
we present an algorithm that decomposes a given hypergraph into conformal
hypergraphs and enumerates all its keys. Computing a minimal decomposition
of an arbitrary hypergraph into conformal hypergraphs remains open in this
paper.

The content of this paper is structured as follows. Section 2 presents the ba-
sic notions from Formal Concept Analysis and hypergraphs. Section 3 presents
the link between keys and k−conformal hypergraphs. NP-Completeness for the
largest key and k-conformal hypergraph recognition are shown. Section 4 de-
scribes an approach to compute keys based of a conformal decomposition.

2 Preliminaries

This paper is written using Formal Concept Analysis [10], and hypergraphs [11]
terminology. We recall some notions and results concerning hypergraphs and
keys of a formal context.

Let K = (G, M, I) be a reduced formal context where G is the set of objects,
M the set of attributes and I ⊆ G×M . A subset Q ⊆ M is said a super-key of K

if there is no object g ∈ G such that Q ⊆ g′ (where g′ denote the set of attributes
owned by the object g). A super-key is called a key if it is (inclusionwise) minimal.
Σ(K) denotes the set of all keys of K. The notion of keys is strongly related to
minimal transversals of a hypergraph (see for example [12]).

A hypergraph H consists of a finite collection of subsets over a finite set V .
The elements of H are called hyperedges, or simply edges. A hypergraph H is said
simple (or Sperner family) if it has no pair of hyperedges E and E′ such that
E is properly contained in E′. A transversal (or hitting set) of H is a set T ⊆ V
that intersects every edge of H, i.e. for all E ∈ H, T ∩ E �= ∅. A transversal is
minimal if it does not contain any other transversal as a subset. The set Tr(H)
of all minimal transversals of H is also a hypergraph on V , which is called the
transversal hypergraph of H. It’s well known that a simple hypergraph satisfies
Tr(Tr(H)) = H [13].
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Fig. 1. The 2-section graph of hypergraphs Ha = {123, 124, 34} and Hb =
{123, 234, 45}
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The complementary hypergraph of a hypergraph H is denoted by H = {V \
E | E ∈ H}. When hyperedges have size at most 2, H is known as an undirected
graph (or graph).

In the following, we consider only simple hypergraphs without isolated vertex,
i.e. V =

⋃
E∈H E. The 2-section graph G(H) of a hypergraph H is a graph

where vertices are the set X =
⋃

E∈H E and edges are all pairs u, v ∈ V that are
contained in a hyperedge of H.

The clique hypergraph of a graph G, denoted by C(G), is a hypergraph with
the same vertices as G and whose hyperedges are the vertex sets of maximal
cliques of G. A hypergraph H is said conformal if it is the clique hypergraph of
its 2-section graph G(H) [14]. We can check that the hypergraph Ha in Figure
1 is not conformal, but the hypergraph Hb is conformal.

Berge [11] introduce the notion k−conformal hypergraphs which can be seen as
a generalization of conformal hypergraphs. A hypergraph H is said k−conformal
if and only if for every vertex set X ⊆ V the following conditions are equivalents:

(i) There exists E ∈ H such that X ⊆ E
(ii) For all S ⊆ X, | S |≤ k, there exists E ∈ H such that S ⊆ E

Note that (i) implies always (ii)
For example the hypergraph Ha considered in Figure 1, is 3-conformal. Notice

that a conformal hypergraph is 2-conformal.

3 k-Conformal Hypergraph Recognition

In this section, we consider the problem of recognizing if a given hypergraph is
k-conformal, and show that is coNP-complete. More formally, this problem is
specified as follows:

Problem: Conformality Degree (CD)
Instance: H ⊆ 2V a hypergraph on a finite set V , a positive integer k ≤| V |.
Question: Is H k-conformal?

First, we highlight the link between k-conformality in a hypergraph and keys
of a formal context.

Let K = (G, M, I) be a reduced formal context. Consider the hypergraph HK

defined on the set M and whose hyperedges are {g′ | g ∈ G, g′is (inclusion wise)
maximal}. We remark that a key of K is a subset Q ⊆ M such that there is no
hyperedge E ∈ HK with Q ⊆ E and it is minimal with this property. Proposition
1 shows that minimal transversals of HK are exactly keys of K (see Example 1).

In the remaining of this paper, We will use K and HK interchangeably.

Proposition 1. [12] Let K be a formal context. Then Σ(K) = Tr(HK).

Example 1. Consider the following formal context:
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K 1 2 3 4 5
a 1 0 0 0 1
b 0 0 0 1 1
c 0 1 1 0 1
d 1 0 1 1 0
e 0 0 1 0 1

Its associated hypergraph is HK = {15, 45, 134, 235}. From HK we can con-
struct the set of all keys of the formal context K : Σ(K) = Tr(HK) = {12, 24,
345, 145}
Berge [11] gives a characterization of a k−conformal hypergraph using minimal
transversal as follows:

Theorem 1. [11] Let H be a hypergraph. Then H is k−conformal iff for all
T ∈ Tr(H), | T |≤ k.

This useful corollary follows immediately from Proposition 1 and the notion of
keys.

Corollary 1. A hypergraph H is k − conformal if and only if the size of every
key of H is at most k.

Corollary 1 tells us that the problem CD is strongly connected with the problem
of computing the size of the largest key of a hypergraph. This last problem can
be stated as follows:

Problem: Maximum Key (MK)
Instance: H ⊆ 2V a hypergraph on a finite set V , a positive integer k ≤| V |.
Question: Is there a key Q of H such that | Q |≥ k ?

Notice that the problem for computing the minimum size of a key in a hyper-
graph is NP-complete ( [15]: SP8). Surprising, it turns out that the problem of
computing the largest key of a given hypergraph is also NP-Complete.

Theorem 2. Maximum Key is NP-Complete.

Proof. Let Q be a subset of V . We can check in polynomial time if Q is a key of
H and it’s size k. Thus MK is in NP.

To show NP-Hardness, we consider the problem of dominating set which is
NP-complete ( [15]: GT2). A dominating set in a graph G = (V, E) is a set
D ⊂ V such that for all x ∈ V \ D there exists y ∈ D for which xy ∈ E.
From [15], we learn that the following problem remains NP-Complete if D is
required to be both a dominating set and an independent set.

Problem: Independent Dominating Set (IDS)
Instance: A graph G = (V, E), a positive integer k ≤| V |.
Question: Is there an independent dominating set D such that | D |≤ k for G?
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Consider a graph G = (V, E) and a positive integer k ≤| V |. We construct a
hypergraph H such that D is an independent dominating set of G of size k iff
V \ D is a key of H of size |V | − k. The vertices of H are elements of V and the
set of hyperedges is H = {V \ {u, v} | uv ∈ E}.

A subset D ⊆ V is an independent dominating set of G iff D is a maximal
independent set of G iff V \ D is a minimal transversal of G. According to the
bijection between minimal transversal and keys, we have V \ D is a key of H iff
D is an independent dominating set of G.

We conclude that MK is NP-complete, since the construction of H is poly-
nomial. 
�

As a consequence, there is no polynomial time algorithm, unless P = NP , to
compute the largest key of a given hypergraph. Therefore, the problem CD is
intractable.

Corollary 2. Conformal Degree is CoNP-Complete

4 Decomposition of a Hypergraph into Conformal
Hypergraphs

We now turn to the issue of generating all keys of a given hypergraph. We first
define an algorithmic framework to generate all keys of a given hypergraph.
This framework is based on decomposition of hypergraph into sub-hypergraphs.
As example, we propose a decomposition of a given hypergraph into conformal
hypergraph.

Let us first recall the following classical operations on two hypergraphs H =
{E1, ..., Em} and G = {F1, ..., Fl}

– Union : H ∪ G = {E1, ..., Em, F1, ..., Fl}.
– Product : H ∨ G = {Ei ∪ Fj | i = 1, ...m and j = 1, ...l}.

The following proposition can be found in [11] in term of minimal transversals.

Proposition 2. Let H and G be simple hypergraphs. Then Σ(H ∪ G) is the
(inclusionwise) minimal sets of Σ(H) ∨ Σ(G).

Proof. Let Q1 ∈ Σ(H) and Q2 ∈ Σ(G). Then Q1 ∪ Q2 is a superkey of H ∪ G.
Conversely, consider Q ∈ Σ(H ∪ G). There exist Q1 ∈ Σ(H) and Q2 ∈ Σ(G)

such that Q1 ∪ Q2 ⊆ Q. Moreover Q1 ∪ Q2 = Q since Q1 ∪ Q2 is a superkey. 
�

From Proposition 2 we obtain a general decomposition-based algorithm to com-
pute keys of a given hypergraph.
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Algorithm 1. Generating keys of a hypergraph
Data : An hypergraph H = {E1, ..., Em} on a set V .
Result: Σ(H) the set of all keys of H.

(1) Let H = {H1, ...,Hk} be a decomposition of H.

(2) Compute Σ(Hi) for each i ∈ [1, k].

(3) Output minimal sets of Σ(H1) ∨ ... ∨ Σ(Hk).

The fundamental point of this framework is to use a decomposition in which
keys of each component of the decomposition can be computed efficiently. The
famous algorithm of Berge [11] which computes minimal transversals can be
viewed as an instance of Algorithm 1. It uses a trivial decomposition where each
component contains only one hyperedge. In this case we have Σ(Hi = Ei) =
{v | v �∈ Ei} as shown in Example 2.

Example 2. Let us illustrate Berge algorihm on H = {123, 124, 34, 25, 45, 135}:
Σ(H) = Σ(123) ∨ Σ(124) ∨ Σ(34) ∨ Σ(25) ∨ Σ(45) ∨ Σ(135)

Σ(H) = {4, 5} ∨ {3, 5} ∨ {1, 2, 5} ∨ {1, 3, 4} ∨ {1, 2, 3} ∨ {2, 4}
Σ(H) = {125, 145, 134, 235, 234, 245, 345}
Now we propose a decomposition technique based on the notion of conformal

hypergraph. Given a non conformal hypergraph H, it’s always possible to decom-
pose it into a collection {H1..., Hk} of conformal hypergraphs. Each component
of the collection can be represented by its 2-section graph. And H can be seen
as the union of clique hypergraphs of these graphs.

For example, consider the hypergraph H = {123, 124, 34}. Collections {H1 =
{123, 124}, H2 = {34}}, {H1 = {123, 34}, H2 = {124}} and {H1 = {124, 34},
H2 = {123}} are possible decompositions into conformal hypergraphs.

Remark 1. Although we consider hypergraphs without isolated vertex. It’s pos-
sible that such vertex appear in sub hypergraphs during decomposition process.
Consequently, 2-section graph of a conformal sub-hypergraph can’t own all ver-
tices of the given hypergraph.

The problem that find the minimum k such that a such decomposition exists
can be stated as follows:

Problem: Minimum Conformal Decomposition (MCD)
Instance: H ⊆ 2V a hypergraph on a finite set V , a positive integer k ≤ |H|.
Output: Is there a decomposition of H into k conformal hypergraphs?

The problem MCD is motivated by the following proposition which makes
link between decomposition of a hypergraph into conformal hypergraph and
k−conformality.
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Proposition 3. Let H be a hypergraph. If H can be decomposed in k conformal
hypergraphs then H is at most 2k−conformal.

Proof. If a hypergraph H can be decomposed into k conformal hypergraphs,
then each key Q ∈ Σ(H) can be written as a union of k sets of size 2. Thus the
size of the largest key is at most 2k. So H is at most 2k−conformal. 
�

Example 3. The hypergraph H = {123, 124, 34} can be decomposed in 2 confor-
mal hypergraphs. So, according to Proposition 3, H is at most 4-conformal. In
this case H is 3-conformal since it’s keys are Σ(H) = {134, 234}.

We have no idea on the difficulty of the problem MCD, but it seems to be
intractable. Nevertheless we will give a naive algorithm to compute a decompo-
sition without guarantee of minimality. Theorem 3 gives a characterization of
conformal hypergraphs.

Theorem 3. [14] An hypergraph H on a set V is conformal if and only if for
all E1, E2, E3 ∈ H we have E ∈ H such that:

(E1 ∩ E2) ∪ (E1 ∩ E3) ∪ (E2 ∩ E3) ⊆ E

Theorem 3 tells us that any hypergraph with at most two hyperedges is con-
formal. Thus the maximum size of a conformal decomposition is at most � |H|

2 �.
Note also that Theorem 3 implies a polynomial-time algorithm to test if a given
hypergraph is conformal. We can deduce from this the following algorithm which
compute a conformal decomposition of a hypergraph.

Algorithm 2. Computing a conformal decomposition
Data : A hypergraph H = {E1, ..., Em}.
Result: H = {H1, ...,Hk} a conformal decomposition of H.

(1) k = 1;
H1 = {E1, E2}.;
H = {H1};

(2) Let 3 ≤ i ≤ m. If exists 1 ≤ j ≤ k such that Hj ∪ Ei is conformal then add
Ei to Hj . Otherwise k = k + 1, Hk = {Ei} and add Hk to H.

Example 4. Consider the hypergraph H = {123, 234, 34, 45} defined on the set
V = {1, 2, 3, 4, 5}. Algorithm 2 produces two conformals hypergraphs H = {H1 =
{123, 234}, H2 = {34, 45}}.

Note that Algorithm 2 does not guaranty a minimal conformal decomposition.
Its complexity depends on the cost of testing condition of Theorem 3.
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Remark 2. Ordering hyperedges according their size (largest first) seems to be
an interesting heuristic

Proposition 4. Algorithm 2 computes a conformal decomposition using
O(k.|V |.|H|4) time complexity.

Proof. The correctness of Algorithm 2 comes directly from Theorem 3. The time
complexity depends on the complexity of step (2). In step (2), for each hyperedge
Ei, 3 ≤ i ≤ m and each component Hj in H, we check if Hj ∪ Ei is conformal.
Knowing that Hj is a conformal hypergraph, it remains to test the condition
of Theorem 3 on (E, E′, Ei) with E, E′ ∈ Hj . This can be done in O(|V |.|H|3)
for each component. Thus the total complexity of step (2) can by bounded by
O(k.|V |.|H|4). 
�
The following proposition shows how to compute keys for a conformal hyper-
graph.

Proposition 5. Let H ⊆ 2V be a nonempty conformal hypergraph and G(H) =
(X, E) its 2-section graph. We have

Σ(H) = X \ V ∪ {xy ∈ X2| xy �∈ E}
Proof. According Corollary 1, the size of keys of a conformal hypergraph is at
most 2. Clearly, vertices in V \ X satisfy definition of a key since it can’t be
contained in a hyperedge. According the definition of 2−section graph, every
pair xy ∈ E is included in a hyperedge of H. Thus other keys are exactly non
edges in G(H). 
�
Theorem 4. Let H ⊆ 2V be a hypergraph and H = {H1, ..., Hk} a confor-
mal decomposition of H. Then Algorithm 1 computes Σ(H) using O(|V |4k) time
complexity.

Proof. Correctness follows directly from Propositions 2 and 5. It remains to show
time complexity. In Step (2), each graph can have at most |V |2 pairs. The size
of the product is at most |V |2k. Thus computing minimal sets of the product
can be done in O(|V |4k) time complexity. 
�

A Complete Running Example

Consider the following formal context.

K 1 2 3 4 5
a 1 1 1 0 0
b 1 1 0 1 0
c 0 0 1 1 0
d 0 1 0 0 1
e 0 0 0 1 1
f 1 0 1 0 1
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The associated hypergraph is HK = {123, 124, 34, 25, 45, 135} defined on the
set V = {1, 2, 3, 4, 5}. Algorithm 2 produces a collection of 3 conformal hyper-
graphs : H1 = {123, 124, 25}, H2 = {34, 45} and H3 = {135}. Their 2-section
graphs are shown in Figure 2.
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Fig. 2.

Step (2) of Algorithm 1 produces keys of each component in this collection:
Σ(H1) = {15, 34, 35, 45}, Σ(H2) = {1, 2, 35} and Σ(H3) = {2, 4}. The minimal
sets of the product Σ(H1) ∨ Σ(H2) ∨ Σ(H3) are Σ(HK) = {125, 145, 134, 235,
234, 245, 345} which correspond to keys of K.

5 Conclusion

In this paper we have established a link between the FCA and the hypergraphs
domain. In particular, we have pointed out equivalence between k−conformal
hypergraphs and the largest size of a key in a formal context. We have also
defined a decomposition into conformal hypergraphs which generalize the Berge
algorithm to generate keys of a formal context (or a hypergraph).

Acknowledgment

We are grateful to the anonymous reviewers for their useful remarks and sug-
gestions.

References

1. Eiter, T., Gottlob, G.: Identifying the minimal transversals of a hypergraph and
related problems. SIAM J. Comput. 24(6), 1278–1304 (1995)

2. Eiter, T., Gottlob, G.: Hypergraph transversal computation and related problems
in logic and ai. In: JELIA, pp. 549–564 (2002)

3. Khardon, R.: Translating between horn representations and their characteristic
models. J. Artif. Intell. Res (JAIR) 3, 349–372 (1995)



About Keys of Formal Context and Conformal Hypergraph 149

4. Fredman, M.L., Khachiyan, L.: On the complexity of dualization of monotone
disjunctive normal forms. J. Algorithms 21(3), 618–628 (1996)

5. Boros, E., et al.: Generating maximal independent sets for hypergraphs with
bounded edge-intersections. In: Farach-Colton, M. (ed.) LATIN 2004. LNCS,
vol. 2976, pp. 488–498. Springer, Heidelberg (2004)

6. Boros, E., et al.: An efficient incremental algorithm for generating all maximal
independent sets in hypergraphs of bounded dimension. Parallel Processing Let-
ters 10(4), 253–266 (2000)

7. Boros, E., et al.: Computing Many Maximal. Independent Sets for Sparse. Hyper-
graphs in Parallel. Technical report, RUTCOR (October 2004)

8. Gunopulos, D., et al.: Data mining, hypergraph transversals, and machine learning.
In: Proceedings of the Sixteenth ACM SIGACT-SIGMOD-SIGART Symposium on
Principles of Database Systems, Tucson, Arizona, May 12-14, 1997, pp. 209–216.
ACM Press, New York (1997)

9. Khachiyan, L., et al.: A new algorithm for the hypergraph transversal problem. In:
Wang, L. (ed.) COCOON 2005. LNCS, vol. 3595, pp. 767–776. Springer, Heidelberg
(2005)

10. Ganter, B., Wille, R.: Formal Concept Analysis. In: Mathematical Foundation,
Springer, Heidelberg (1999)

11. Berge, C.: Hypergraphes, Combinatoires des ensembles finis. Bordas (1987), Num-
ber ISBN: 5-04-016906-7

12. Demetrovics, J., Thi, V.D.: Describing candidate keys by hypergraphs. Computers
and artificial intelligence 18(2), 191–207 (1999)

13. Edmonds, J., Fulkerson, D.: Bottleneck Extrema. Journal of Combinatorial The-
ory 8, 299–306 (1970)

14. Gilmore, P.: Families of sets with faithful graph representation. IBM Research
Note N.C. 184, Thomas J. Watson Research Center, YorkTown Heights, New York
(1962)

15. Garey, M.R., Johnson, D.S.: Computers and Intractability, A Guide to the Theory
of NP-Completeness. W.H. Freeman and Company, New York (1979)



An Algebraization of

Linear Continuum Structures

Rudolf Wille

Technische Universität Darmstadt, Fachbereich Mathematik,
Schloßgartenstr. 7, D–64289 Darmstadt,
wille@mathematik.tu-darmstadt.de

Abstract. This paper continuous the approach of developing an order-
theoretic structure theory of one-dimensional continuum structures as
elaborated in [Wi07] (see also [Wi83],[Wi03]). The aim is to extend the
order-theoretic structure theory by a meaningful algebraization; for this,
we concentrate on the real linear continuum structure with its derived
concept lattice which gives rise to the so-called “real half-numbers”. The
algebraization approaches an ordered algebraic structure on the set of
all real half-numbers to make the continuum structure of the reals more
transparent and tractable.
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1 Introduction

It is still an open question whether a continuum should consist of points or not.
This paper is based on the view that, on the phenomenological level, a continuum
does not contain points, but, on the logical level, it might be useful to construct
points as limits of convergence processes. Aristotle made this already clear by
analysing Zenon’s paradox of the flying arrow: it says that the flying arrow is in
each moment in some place, hence does not change the place in any moment,
and therefore does not move. Aristotle has convincingly analysed this paradox
by making clear “that the movement is not performed in a ‘now’, but in some
time; time however does not consist of nows, but of durations” ([We72], p.431).
Aristotle understood time and durations as continua which means according to
his continuum definition that they “are unlimitedly divisible into smaller parts”
([We72], p.431). Therefore, for Aristotle, durations do not consist of time points,
but time points are only limits of durations. Aristotle’s conception of the time
and space continuum yields in general that a continuum does not consist of
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points, but has as parts only continua again whose nature is to be extensive. In
contrast to that, points are in principle of different nature: they are not extensive
and can only be understood as limits of extensives.

2 Linear Continuum Structures

First we recall the mathematical analysis of the one-dimensional continuum of
an unlimited straight line which is based by the following definition cited from
[Wi07]:

Definition 1. A linear continuum structure is defined as an ordered set C :=
(C, ≤) satisfying the following conditions:

(1) C is a
∨

-semilattice with greatest element 1 and without smallest element;
(2) the ∧-irreducible elements of C form two disjoint dense chains C� and C �

without greatest and smallest element, where c� ∨ c� = 1 for all c� ∈ C�

and c� ∈ C �;
(3) c1∧ c2 = d1∧ d2 implies c1 = d1, c2 = d2 for all c1, d1 ∈ C�, c2, d2 ∈ C �;
(4) there exists an antiisomorphism c� �→ c� from C� onto C � such that

C = {1} ∪ C� ∪ C � ∪ {c� ∧ d | c� ∈ C� and d ∈ C � with c�< d}.
The elements of C are called (linear) continua, and the pairs (c�, c�) of corre-
sponding elements c� ∈ C� and c� ∈ C � are called the cuts of C. Notice that
no pair consisting of c� and c� has a lower bound in the ordered set C. ♦
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Fig. 1. A linear continuum represented by an ordered set

Fig. 1 visualizes a linear continuum structure C := (C, ≤). In this figure the
phenemonological conception of a linear continuum is indicated by the horizontal
sequence of dots on the bottom. Each element of C stands for a subcontinuum
of the phenemonological continuum; for instance, the element d� ∧ c stands for
the subcontinuum indicated by the dots below the two line segments drawn
downwards from the circle representing d� ∧ c. The elements c� and c� stand
for two subcontinua which are disjoint, but cover together the total continuum
coded by 1; hence the pair (c�, c�) indicates a division of a one-dimensional
phenomenological continuum into two subcontinua.

In this paper we concentrate on the real linear continuum structure introduced
in [Wi07] as follows: The ordered field R of real numbers gives rise to the linear
continuum structure C

R
:= (CR, ⊆) for which the set CR consists of the open

intervals ]r, s[:= {x ∈ R | r < x < s} with r ∈ R ∪ {−∞} and s ∈ R ∪ {+∞}.
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In this continuum structure the convex hull of the set-theoretic union is the
supremum and ]− ∞, +∞[ is the greatest element; the ∧-irreducible elements
form the dense chains C� := {]− ∞, s[ | s ∈ R} and C � := {]r, +∞[ | r ∈ R};
the accompanying antiisomorphism between C� and C � can be described by
]− ∞, r[ �→ ]r, +∞[. The cuts of C

R
are therefore the pairs (]− ∞, r[, ]r, +∞[)

(r ∈ R).

3 Concept Lattices Derived from Ordered Sets

Formal Concept Analysis [GW99] can be activated to make mathematically ex-
plicit that points, according to Aristotle [Ar95], can be understood as limits
of continua; such limits cannot be parts of continua. The extension by points
will be performed by using a general method of Formal Concept Analysis which
mathematically establishes the transfer from ideas to concepts in the sense of
the structure-genetic psychology of Jean Piaget [Pi59]. The mathematization of
this transfer is grounded on ordered sets C := (C, ≤) of preconceptual ‘ideas’ (cf.
[SW86]). For analysing the general method we have to refer to the Basic Theo-
rem of Concept Lattices which therefore shall be recalled here (for the proof see
[GW99]):

Basic Theorem on Concept Lattices. [Wi82] Let K := (G, M, I) be a formal
context. Then B(K) is a complete lattice, called the concept lattice of K, whose
infima and suprema can be described as follows:

∧

t∈T

(At, Bt) = (
⋂

t∈T

At, (
⋃

t∈T

Bt)II),
∨

t∈T

(At, Bt) = ((
⋃

t∈T

At)II ,
⋂

t∈T

Bt).

In general a complete lattice L is isomorphic to B(K) if and only if there exist
mappings γ̃ : G → L and μ̃ : M → L such that γ̃G is

∨
-dense in L (i.e.

L = {∨
X | X ⊆ γ̃G}), μ̃M is

∧
-dense in L (i.e. L = {∧

X | X ⊆ μ̃M}), and
gIm ⇐⇒ γ̃g ≤ μ̃m for g ∈ G and m ∈ M ; in particular, L ∼= B(L, L, ≤) and, if
the set J(L) of all

∨
-irreducible elements is

∨
-dense in L and the set M(L) of all∧

-irreducible elements is
∧

-dense, then we have that L ∼= B(J(L), M(L), ≤).

The process of concept building models formal objects by filters of an arbitrary
ordered set C and formal attributes by ideals of C (cf. [SW86]). A filter of C
is a non-empty subset F of C, for which a ∈ F and a ≤ b imply b ∈ F and
a, c ∈ F guarantees the existence of some d ∈ F with d ≤ a, c ; an ideal of
C is dually defined to the filter1. This modelling leads to the derived context
K(C) := (F(C), I(C), Δ) for which F(C) is the set of all non-empty filters F of
C and I(C) is the set of all non-empty ideals I of C with FΔI : ⇐⇒ F ∩ I �= ∅;
hence a filter as ‘object’ has an ideal as ‘attribute’ if and only if filter and ideal
have at least one idea in common. Important are the ideal-maximal filters F in
F(C) for which an ideal I exists in I(C) so that F is a maximal filter having the

1 Filters and ideals represent dual processes of convergence of ordered ideas.
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property F ∩ I = ∅; F is named an I-maximal filter and, furthermore, if I is a
maximal ideal with F ∩ I = ∅ then I is called an F -opposite. As dual notions
we have filter-maximal ideals, F -maximal ideals, and I-opposites. The set of all
ideal-maximal filters is denoted by F0(C) and the set of all filter-maximal ideals
is denoted by I0(C). The following theorem informs about meaningful structural
properties of the concept lattice of K(C) (for the proof see [Wi07]):

Theorem 1. The ordered set C of ideas is naturally embedded by the map
ι : x �→ ({F ∈ F(C) | x ∈ F}, {I ∈ I(C) | x ∈ I}) into the concept lattice of the
derived context K(C) where ι(x∧y) = ι(x)∧ι(y) resp. ι(x∨y) = ι(x)∨ι(y) if x∧y
resp. x ∨ y exists in C; in B(K(C)), the set of all

∨
-irreducibles J(B(K(C)))(=

γF0(C)) is
∨

-dense and the set of all
∧

-irreducibles M(B(K(C)))(= μI0(C)) is∧
-dense, i.e., B(K(C)) ∼= B(F0(C), I0(C), Δ).

Theorem 1 yields a general method to derive from an ordered set of preconceptual
ideas a concept lattice in which every formal concept is the supremum of

∨
-

irreducible concepts and the infimum of
∧

-irreducible concepts. For applying
Theorem 1 to linear continuum structures, the ideal-maximal filters and filter-
maximal ideals of those continuum structures are determined by the following
lemma (for the proof see [Wi07]).

Lemma 1. Let C be a linear continuum structure. In the ordered set C, F� :=
C� ∪ {1} and F � := C � ∪ {1} are the ‘extreme’ ideal-maximal filters and I� :=
{x ∈ C | x ≤ c for some c ∈ C�} and I� := {x ∈ C | x ≤ c for some c ∈ C �}
are the ‘extreme’ filter-maximal ideals. The cuts (c�, c�) of C supply the other
ideal-maximal filters of C by

Fc� := {x ∈ C | x ≥ c�∧ d for some d ∈ C � with c�< d},
Fc � := {y ∈ C | y ≥ c�∧ d for some d ∈ C� with c�< d},

and the other filter-maximal ideals of C by

I(c�) := {x ∈ C | x ≤ x̄ < c� for some x̄ ∈ C�} and I(c �] := {y ∈ C | y ≤ c�},
I(c �) := {y ∈ C | y ≤ ȳ < c� for some ȳ ∈ C�} and I(c�] := {x ∈ C | x ≤ c�}.

Theorem 2. In the concept lattice of the formal context K(C) := (F(C),
I(C), Δ) of a linear continuum structure C,
(1) ι(1)(= γF� ∨ γF �) is the greatest element of K(C),
(2) γF0(C) is the set of all atoms and is the disjoint union of the sets

A1 := {γF�} ∪ {γFc � | c� ∈ C �} and A2 := {γF �} ∪ {γFc� | c� ∈ C�},
(3) μI0(C)(= {γF� ∨ γF | F ∈ A1} ∪ {γF � ∨ γF | F ∈ A2}) is the set of all

∧-irreducible elements and is the disjoint union of the convex chains
[γF�, ι(1)[ and [γF �, ι(1)[,

(4) for each cut (c�, c�), we have γF� ∨ γFc� = μI(c�] and γF � ∨ γFc � = μI(c �],
μI(c�] is a lower neighbour of μI(c�] ∨ γFc � and an upper neighbour of μI(c�),
μI(c �] is a lower neighbour of μI(c �] ∨ γFc� and an upper neighbour of μI(c �),

(5) for x = d� ∧ c�, we have ι(x) := ({F ∈ F(C) | x ∈ F}, {I ∈ I(C) | x ∈ I})
= γFc � ∨ γFd� = μI(d�] ∧ μI(c �].
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Fig. 2. A concept lattice derived from a linear continuum structure

Since the linear continuum structure C is embeddable into the concept lattice
B(K(C)) by Theorem 1, that concept lattice yields for the linear continuum
structure an extended conceptual coherence which is made explicit in several
aspects by Theorem 2. Most important for the theme of this paper is that the
atoms of B(K(C)) represent ‘point concepts’, which have every other formal
concept as supremum by (2). By (4), each cut of the linear continuum structure
gives rise to two cut-limiting point concepts the supremum of which may be
viewed as a point in the common sense. (5) desribes how point concepts can be
represented as limits of continua. These hints shall suffice to demonstrate the
fruitfulness of the concept-analytic method and support Aristotle’s conception
of continua. The concept-analytic results of Theorem 2 shall be concretized by
the real linear continuum:

The real linear continuum structure C
R

described on page 2 can be embedded
by the mapping ι into the concept lattice of the formal context K(C

R
) by The-

orem 1. This can be illustrated by a linear ordered set (Ř, ≤) extending (R, ≤).
(Ř, ≤) is defined by

Ř := R ∪ R ∪ {−∞, +∞} with R := { r | r ∈ R}, R := {r | r ∈ R}, and
r ≤ s :⇔ r ≤ s, r ≤ s :⇔ r ≤ s, r ≤ s :⇔ r ≤ s, r < s :⇔ r < s, and
−∞ < r < +∞ and −∞ < r < +∞ for all r ∈ R.

The linear ordered set (Ř \ {−∞, +∞}, ≤) clearly evolves out of (R, ≤)
by dividing each real number r into the two elements r < r. Ř is bijectively
mapped onto the set of all atoms of B(K(C

R
)) by the mapping α with α(−∞) :=

γF�, α(r) := γF]−∞,r[, α(r) := γF]r,+∞[, and α(+∞) := γF �. Simplifying def-
initions are −∞ := γF�, r := γF]−∞,r[, r := γF]r,+∞[ and +∞ := γF �. The
linear order of (Ř, ≤) is transferred onto the set of all atoms of B(K(C

R
)); ac-

cording to this linear order ≤ on B(K(C
R
)), −∞ is the smallest atom, +∞ is

the greatest atom, and r< r< s< s if r < s in R. The continua of the real linear
continuum structure C

R
are represented in the concept lattice by the formal

concepts ι(]r, s[), respectively. By Theorem 2(5), we have ι(]r, s[) = r ∨ s which
shows that the atoms below ι(]r, s[) are exactly the atoms a with r ≤ a ≤ s;
therefore it is meaningful to say that the point concepts r and s are the limits of
the continuum concept ι(]r, s[). The cuts of the real linear continuum structure
are represented in the concept lattice by the pairs (r, r); in this conceptual con-
nection r and r are standing for the two irreducible subpoints of the reducible
real point which is represented by the formal concept r ∨ r.
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4 An Algebraization by Real Half-Numbers

It is, of course, interesting to find answers to the question whether the irreducible
subpoints of the real linear continuum structure may carry a meaningful alge-
braic structure. For approaching such an answer, the irreducible subpoints, which
have been created by the maximal filters of the real linear continuum structure,
shall be understood as the “real half-numbers”. They divide into three sets: the
set R of all “real lower half-numbers”, the set R of all “real upper half-numbers”,
and the set {−∞, +∞} of the lower and upper infinite numbers, respectively,
which bound the real half-numbers from below and above.

Now, an algebraization shall be proposed on the set R := R ∪ R of all real
half-numbers where the real lower half-numbers of R are generally denoted by x
and the real upper half-numbers of R are generally denoted by y. First a binary
addition is defined as follows:

r + s = r + s , r + s = r + s , r + s = r + s , and r + s = r + s;

furthermore, a unary operation is formed by two inversions ρ
0

which are defined
by

ρ
0
(r) := −r and ρ0(r) := −r .

The mapping π : (R, +) −→ (R, +) with π(r) = r and π(r) = r for all r ∈ R is
a surjective homomorphism. Conversely, we have two injective homomorphisms
ι : (R, +) −→ (R, +) with ι(r) = r and ι : (R, +) −→ (R, +) with ι(r) = r.
Of course, (R, +) and (R, +) are isomorphic to (R, +) which becomes explicit
by the isomorphisms πι and πι. The isomorphisms π : (R, +) −→ (R, +) with
π(r) = r and π : (R, +) −→ (R, +) with π(r) = r are called “lower projection”
and “upper projection”, respectively.

The inversion ρ
0

: (R, +, ρ
0
, ≤) −→ (R, +, ρ

0
, ≤) with ρ

0
(r) = −r and the

inversion ρ0 : (R, +, ρ
0
, ≤) −→ (R, +, ρ

0
, ≤) with ρ0(r) = −r combine to an

antiisomorphism with respect to the order ≤. An analogous antiautomorphism
can be defined for every fixed real number x:

ρ
x
(r) := 2x − r and ρx(r) := 2x − r

Now, a meaningful algebraization of the real linear continuum structures can
be established. First we define the binary addition of real linear continuum sub-
structures which are bounded by the pairs of real half-numbers r1 < r2 and
s1 < s2, respectively:

[r1, r2] + [s1, r2] := [r1 + s1, r2 + s2]

Notice, if r1 = 0 = s1, the addition yields just the sum of the positive lengths
of the two continua and, if r2 = 0 = s2, the addition yields just the sum of
the negative length of the two continua. Another special case is when r2 =
(r2 ∨ s1) = s1 for the real numbers r2 and s1, then the sum of the lengths of
the two continua equals the length of the subcontinuum [r1, s2]. If r2 < s1, then
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the length of the subcontinuum [r1, s2] is the sum of the lengths of the three
disjoint continua [r1, r2], [r2, s1], and [s1, r2].

Secondly, the unary inversions ρ
x

and ρx can be applied to the real linear
continuum structures as follows:

[ρ
x
(r1), ρx(r2)] = [2x − r2, 2x − r1]

The inversions ρ
x

and ρx reflect the real half-numbers on the real number x
where lower half-numbers are mapped onto upper half-numbers and upper half
numbers are mapped onto lower half-numbers.

The started algebraization of real linear continuum structures shall be inter-
rupted here, but should be continued more deeply in the near future. The aim
of this paper was to show how an algebraization of continuum structures could
be approached.

5 Further Research

The natural continuation of the work on continuum structures would be to elab-
orate first an order-theoretic and then an algebraic approach to mathematize
higher dimensional continuum structures. The basic task of developing such an
approach is to find adequate order-theoretic and algebraic models in higher di-
mensions. Already for the 2-dimensional case those continuum structures are
not known yet, which indicates that new ideas are necessary. There is some hope
that the results about the one-dimensional continuum structures can be used and
generalized for building higher dimensional order-theoretic and algebraic models.
A promising idea is to inductively construct those models top-down by starting
with a network of infinitely many one-dimensional continuum structures.
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Abstract. We investigate the computational complexity of some deci-
sion and counting problems related to generators of closed sets funda-
mental in Formal Concept Analysis. We recall results from the litera-
ture about the problem of checking the existence of a generator with a
specified cardinality, and about the problem of determining the number
of minimal generators. Moreover, we show that the problem of counting
minimum cardinality generators is #·coNP-complete. We also present an
incremental-polynomial time algorithm from relational database theory
that can be used for computing all minimal generators of an implication-
closed set.

1 Introduction

Closed sets and pseudo-closed sets play an important rôle in Formal Concept
Analysis (FCA) [5]. For instance, the sets closed under implications are funda-
mental to the attribute exploration algorithm [4]. In addition, pseudo-closed sets
form the left-hand sides of the implications in the canonical implication base
called the Duquenne-Guigues Base [7] of a formal context. As a result, many
problems related to closed and pseudo-closed sets have been by now well investi-
gated in the FCA community. For instance, there exist several polynomial-delay
algorithms1 that generate all concept intents of a formal context. Other compu-
tational problems related to pseudo-closed sets have been analyzed in [11,12,14].

Beside closed and pseudo-closed sets, generators of closed sets also play an
important rôle in FCA. Inspite of this, as mentioned in [17], they have been
paid little attention in the FCA community, especially computational problems
related to them have not been well investigated. Different aspects of minimal
generators have been investigated in the literature [23,17,3]. Valtchev et al. pre-
sented in [23] an efficient method for maintaining the set of minimal generators
of all intents of a formal context upon increases in the object set of the under-
lying context. Nehmé et al. investigated in [17] the same problem in the dual
setting. They presented a method for maintaining the set of minimal generators
upon increases in the attribute set of the context. They characterized how the
1 See [13] for a comprehensive list and a detailed comparison of these algorithms.

R. Medina and S. Obiedkov (Eds.): ICFCA 2008, LNAI 4933, pp. 158–168, 2008.
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set of minimal generators changes when a new attribute is added to the context.
Using this characterization they developed an efficient incremental algorithm for
generating concept intents. Frambourg et al. worked in [3] on evolution of the
the set of minimal generators during lattice assembly.

The present paper aims to given an overview of the computational complexity
of some decision and counting problems on generators of closed sets. In partic-
ular we consider the two types of closed sets that are fundamental in FCA,
namely concept intents and sets closed under a set of implications. Throughout
the text, for the latter type of sets, we use the term implication-closed set. We
recall results from the literature about the problem of checking the existence of
a generator with a specified cardinality, and about the problem of determining
the number of minimal generators. Moreover, we define a new problem about the
second type of closed sets, namely the problem of determining the number of min-
imum cardinality generators, and show that this problem is #·coNP-complete,
i.e., it is even more difficult than determining the number of minimal gener-
ators. We also point out that an incremental-polynomial time algorithm from
relational database theory can be used for computing all minimal generators of
an implication-closed set.

Our motivation for analyzing these problems is not only theoretical, but also
practical. A good analysis of these problems can help to develop methods that
support the expert during attribute exploration by making the implication ques-
tions “simpler”. We know that the attribute exploration algorithm asks the
smallest number of questions to the expert, i.e., none of the questions it asks is
redundant. However, it might still be possible to shorten an implication question
by removing redundant attributes from its premise and conclusion. Moreover, a
good analysis of the problems related to generators of concept intents can help
to develop efficient lattice construction and merge algorithms.

2 Counting Complexity

We assume that the reader has a basic knowledge of complexity theory. Addi-
tional information can be found in the book [19].

A counting problem is presented using a suitable witness function which for
every input x returns a set of witnesses for x. Formally, a witness function is a
function A : Σ∗ → P<ω(Γ ∗), where Σ and Γ are two alphabets, and P<ω(Γ ∗) is
the collections of all finite subsets of Γ ∗. Every such witness function gives rise
to the following counting problem: given a string x ∈ Σ∗, find the cardinality
|A(x)| of the witness set A(x).

Complexity of counting problems was first investigated by Valiant in [21,22].
For a systematical study and classification of counting problems he introduced
the counting complexity class #P, defined as the class of functions counting
the number of accepting paths of nondeterministic polynomial-time Turing ma-
chines. A typical member is the problem #sat, counting the number of satisfy-
ing assignments to a propositional formula in conjunctive normal form. Valiant
showed in [21, 22] that #sat and many other problems are #P-complete.
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Hemaspaandra and Vollmer introduced in [9] a predicate-based approach for
defining higher counting complexity classes. In this approach, the counting com-
plexity classes are denoted by #·C.

Definition 1. #·C is the class of all counting problems whose witness func-
tion A satisfies the following conditions:

(i) There is a polynomial p(n) such that every x ∈ Σ∗ and every y ∈ A(x)
satisfy the relation |y| ≤ p(|x|);

(ii) The decision problem “given x and y, does y belong to A(x)?” is in C.

Completeness of the problems in #P is often proved by using parsimonious
reductions, which are polynomial-time reductions preserving the number of so-
lutions by establishing a bijection between the solution sets of the problems.
There are, however, two shortcoming of parsimonious reductions. First, they
are not powerful enough, since they represent a particular case of many-one re-
ductions, whereas Valiant was obliged to use Turing reductions in [21, 22] to
be able to prove #P-completeness of several problems like #permanent or
#perfect matchings. Second, even if the many-one reduction is powerful
enough for proving completeness, there does not need to exist a one-to-one cor-
respondence between the solutions of the reduced problems. On the other hand,
Turing reductions turned out to be too powerful, since as it was proved in [20],
they collapse all counting classes #·ΣkP and #·ΠkP to #P.

In order to overcome this problem, Durand et al. introduced in [2] a new kind
of reductions called subtractive reduction, under which #P and the higher classes
#·ΠkP for each k ∈ N are closed. A subtractive reduction between counting
problems first overcounts the number of solutions and then carefully subtracts
any surplus. It is formally defined as follows.

Definition 2. Let Σ, Γ be two alphabets and let #·A and #·B be two counting
problems determined by the binary relations A and B between strings from Σ to
Γ . We say that #·A reduces to #·B via a strong subtractive reduction if there
exist two polynomial-time computable functions f and g such that for every string
x ∈ Σ∗ the following conditions hold.
1. B(f(x)) ⊆ B(g(x));
2. |A(x)| = |B(g(x))| − |B(f(x))|.

A subtractive reduction is a transitive closure of strong subtractive reductions.

Parsimonious reductions constitute a special case of subtractive reductions with
B(f(x)) = ∅. In [2] it was pointed out that subtractive reductions are well-suited
tools to study the higher counting complexity classes #·ΣkP and #·ΠkP.

3 Generators of Concept Intents

We assume that the reader is familiar with the theory of FCA. We briefly mention
the necessary basic notions and refer the reader to the standard textbook [5] for
additional information. In the present section we shortly recall the notion of
generators of a concept intent, and some well-known computational problems
about them.
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Definition 3. Let K = (G, M, I) be a formal context and C ⊆ M be a concept
intent, i.e., C′′ = C. The subset D ⊆ C is a minimal generator of C under (·)′′
if D′′ = C holds and D is subset-minimal, i.e., for all E � D we have E′′

� C.

We first recall the computational complexity of checking whether a concept intent
has a generator of cardinality less than or equal to a specified size. It is well-
known that the following problem is NP-complete.

Problem: intent generator

Input: A formal context K = (G, M, I), the intent D of a formal concept (C, D)
from K, and a positive integer m ≤ |A|.
Question: Is there a subset Q ⊆ D of cardinality less than or equal to m that
generates D, i.e., is there a Q ⊆ D such that Q′′ = D and |Q| ≤ m?

Frambourg et al. mentioned in [3] that the number of minimal generators of an
intent can be exponential in the size of the context. Apart from this exponential
bound, it is common folklore that the following problem is #P-complete.

Problem: #minimal intent generator

Input: A formal context K = (G, M, I) and the intent D of a formal concept
(C, D) in K.
Output: Number of all subset-minimal intent generators of D with respect to the
closure operator (·)′′, i.e., |{Q ⊆ D | Q′′ = D ∧ ∀P � Q, P ′′ 	= D}|.

4 Generators of Implication-Closed Sets

In the present section we first shortly recall the notion of minimal generators of
an implication-closed set, and some well-known computational problems about
minimal generators. Later we define a new problem about minimal generators,
and work its computational complexity.

Definition 4. Let L be a set of implications on a finite attribute set A and
P ⊆ A be closed with respect to L, i.e., L(P ) = P . The subset Q ⊆ P is a
minimal generator of P under L if L(Q) = P holds and Q is subset-minimal,
i.e., for all R � Q we have L(R) � P .

Minimal generators appear in the literature under different names in various
fields. For instance, in relational databases they are called minimal keys, and
various properties of them have been considered in the literature. In order to
make this connection clear, let us briefly recall some basic notions of relational
databases.

4.1 Connection to Relational Databases

Functional dependencies are a way of expressing constraints on data in relational
databases [16]. Informally, a functional dependency occurs when the values of
a tuple on one set of attributes uniquely determine the values on another set
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of attributes. Formally, given a relation R and a set of attribute names A, a
functional dependency is a pair of sets X, Y ⊆ A written as X → Y . The
relation R satisfies the functional dependency X → Y if the tuples with equal
X-values also have equal Y -values. In this case we say that the set of attributes X
functionally determine the set of attributes Y .

Another important concept in relational databases is the notion of a key.
Given a relation R on the attribute set A, a set K ⊆ A is called a key of R if K
functionally determines A. It is called a minimal key if no proper subset of it is
a key. Alternatively, given a set of functional dependencies F that are satisfied
by R, a set K ⊆ A is called a key of the relational system 〈A, F 〉 if K → A can
be inferred from F by using Armstrong’s axioms [1]. In practical applications,
it is important to find “small” keys of a given relation. Lucchesi and Osborn
analyzed in [15] how difficult it is to check whether a given relation has a key of
cardinality bounded by a specified size. This problem is known as the minimum

cardinality key problem (see problem [SR26] in [6]).

Problem: minimum cardinality key

Input: A set A of attribute names, a collection F of functional dependencies,
and a positive integer m ∈ N.
Question: Is there a key of cardinality m or less for the relational system 〈A, F 〉?

Lucchesi and Osborn proved in [15] that minimum cardinality key is NP-
complete. It is well-known that minimal generators of a closed set are the minimal
keys of the subrelation defined by this closed set. Based on this observation, it
is easy to see that the following problem is also NP-complete.

Problem: minimum cardinality generator

Input: A set A of attribute names, a set L of implications on A, an L-closed
subset P of A, and a positive integer m ≤ |A|.
Question: Is there a subset Q ⊆ P of cardinality |Q| ≤ m that generates P
under L, i.e., is there a Q ⊆ P such that L(Q) = P and |Q| ≤ m?

4.2 Counting Minimal Generators

Osborn showed in [18] that the number of minimal keys for a relational system
〈A, F 〉 can be exponential in |A|. Moreover, Gunopulos et al. proved in [8] that
the problem of determining the number of minimal keys of a relational system
is #P-complete. Due to the correspondence between minimal keys and minimal
generators of a closed set, it is also well-known that the number of minimal
generators can be exponential in the size of the attribute set, and that the
following counting problem is #P-complete.

Problem: #minimal generator

Input: A set A of attribute names, a set L of implications on A, and an L-closed
subset P of A.
Output: Number of all subset-minimal generators of P under L.
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Algorithm 1. Minimal generator
Input: Implications L on the attribute set A and a subset P ⊆ A such that L(P ) = P
Output: A minimal generator Q of P
1: Q ← P
2: for all m ∈ P do
3: if L(Q � {m}) = P then
4: Q ← Q � {m}
5: end if
6: end for

4.3 Finding All Minimal Generators

In some cases, it might not be enough to find only one minimal generator of
an implication-closed set. For instance during attribute exploration it might
be useful to show the expert different minimal generators of the premise and
conclusion of the implication question for better understandability. The expert
might want to browse among them to find a shortened version of the question
which is most comprehensible to him. In the sequel we are going to investigate
the problem of determining all minimal generators of a closed set.

Lucchesi and Osborn presented in [15] an algorithm to determine all minimal
keys of a given relation. Given a set of attributes R and a set of functional de-
pendencies F , the algorithm returns the set of all minimal keys for the relational
system 〈R, F 〉. Below we present an adaptation of this algorithm to find all min-
imal generators of a given implication-closed set. The algorithm is based on the
following property shown in [15]. Here we formulate the property in terms of
implications and minimal generators, and leave out its proof.

Lemma 5. Let L be a set of implications on the attributes A and G be a
nonempty set of minimal generators for a given P ⊆ A under L. The comple-
ment set 2P

�G contains a minimal generator if and only if G contains a minimal
generator G and L contains an implication L → R, such that L ∪ R ∪ G ⊆ P
holds and L ∪ (G � R) does not include any minimal generator from G.

Lemma 5 assumes the existence of a nonempty set of minimal generators, thus
the algorithm following from the lemma needs one minimal generator before it
can proceed to find all other minimal generators. It is not difficult to find one
minimal generator of a given implication-closed set P . We can start with P ,
iterate over all elements of P , and remove an element if the remaining set still
generates P . Algorithm 1 implements this idea. It determines a minimal genera-
tor of a given set of attributes P closed under a given set of implications L. Algo-
rithm 1 terminates since P is finite. Upon termination, Q is a minimal generator
of P since it does not contain any redundant attributes. For checking whether
Q�{m} generates P we can use the well-known implicational closure algorithm
LinClosure from [16]. The LinClosure algorithm runs in time O(|L| |A|).
Algorithm 1 makes at most |A| iterations of LinClosure and therefore it runs
in time O(|L| |A|2).
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Algorithm 2. All minimal generators
Input: Set of implications L on the attribute set A and an L-closed set P ⊆ A
Output: All minimal generators G of P
1: G ← {MinGen(P, L)} {Initial set of minimal generators}
2: for all G ∈ G do
3: for all L → R ∈ L such that L ∪ R ∪ G ⊆ P do
4: S ← L ∪ (G � R)
5: flag ← true
6: for all H ∈ G do
7: if H ⊆ S then
8: flag ← false
9: end if

10: end for
11: if flag then
12: G ← G ∪ {MinGen(S, L)}
13: end if
14: end for
15: end for

Now that we have an algorithm to determine one minimal generator, we can
proceed with the algorithm determining the set of all minimal generators of an
implication-closed set.

Algorithm 2 terminates, since G and L are both finite. Following Lemma 5,
upon termination of the algorithm the set G contains all minimal generators
of the given set of attributes P under L. Let |L| = �, |G| = g, and |P | = p
be the cardinalities of the corresponding sets. The algorithm runs in time
O(�g(p + gp)) + O(gm), where m is the complexity of Algorithm 1. Hence Algo-
rithm 2 has time complexity O(�gp(g + p)). Note that the algorithm finds min-
imal generators in incremental polynomial time, which is a notion introduced
in [10] for analyzing the performance of algorithms that generate all solutions of
a problem. An algorithm is said to run in incremental polynomial time if given
an input and a prefix of the set of solutions (say, a closed set and a collection
of the first k minimal generators), it finds another solution, or determines that
none exists, in time polynomial in the combined sizes of the input and the given
prefix. For finding a minimal generator, Algorithm 2 needs to perform at most
g�p(g + p) operations, which is polynomial in the size of the input, i.e., in the
size of L and P , as well as polynomial in the size of the already found minimal
generators G.

Another notion introduced in [10] for analyzing algorithms that enumerate
solutions is polynomial delay. An algorithm is said to run with polynomial delay
if the delay until the first solution is written, as well as thereafter the delay
between any two consecutive solutions, is bounded by a polynomial in the size
of the input. Polynomial delay is a stronger notion than incremental polynomial
time, i.e., if an algorithm runs with polynomial delay it is also runs in incremen-
tal polynomial time. To the best of our knowledge, there is no polynomial delay
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algorithm that finds all minimal keys of a relation, which is equivalent to finding
all minimal generators of an attribute set closed under a set of implications.

4.4 Counting Minimum Cardinality Generators

In this section we consider a modified version of the #minimal generator.
For this problem, we slightly change the notion of “generates“ as follows. For a
given set L of implications on an attribute set A, and an L-closed set P ⊆ A,
we say that a Q ⊆ A is a minimum cardinality generator of P if L(Q) � Q = P
holds and no subset of A with smaller cardinality satisfies this property. In other
words, we require that P should be the “new consequences” of closing Q under L
and that no set with smaller cardinality can have this property. It turns out that
the problem of counting such sets is #·coNP-complete, which means that it is
even harder than the #minimal generator problem.

Problem: #minimum cardinality generator

Input: A set A of attribute names, a set L of implications on A, an L-closed
subset P of A.
Question: Number of all minimum cardinality generators of P under L, i.e.,
number of the subsets Q ⊆ A such that L(Q) � Q = P and no other subset
R ⊆ A with |R| < |Q| satisfies the condition L(R) � R = P .

Theorem 6. #minimum cardinality generator is #·coNP-complete.

Proof. The problem is clearly in #·coNP what can be shown as follows. Given
a set of attributes Q, we have to check (i) whether Q generates P , and if so
(ii) whether there is another generator R with |R| < |Q|. The first test can be
done in polynomial time using a closure algorithm based on the reachability
algorithm for graphs. The second test, which dominates the overall complexity,
can be done by a coNP-algorithm. Indeed, checking whether Q is not a mini-
mum cardinality generator can be done by the following NP-algorithm: Guess
a subset of attributes R ⊆ A such that |R| < |Q| and check if R generates P .
Again, checking if R generates P can be done in polynomial time, thus check-
ing whether Q is a minimum cardinality generator can be done in coNP and
counting such sets can be done in #·coNP.

We show the #·coNP-hardness by a strong subtractive reduction from the
problem #Π1SAT. #Π1SAT is #·coNP-complete according to [2]. Consider an
instance of the #Π1SAT problem given by a formula ϕ(X) = ∀Y ψ(X, Y ) where
X = {x1, . . . , xk} and Y = {y1, . . . , yl} are disjoint sets of variables. Without
loss of generality we can assume that ψ(X, Y ) is in 3DNF, i.e., it is of the form
C1 ∨ · · · ∨ Cn where each Ci is of the form Ci = li1 ∧ li2 ∧ li3, and the lij ’s are
propositional literals over X ∪ Y .

Let x′
1, . . . , x

′
k, q1, . . . , qk, y′

1, . . . , y
′
l, r1, . . . , rl, g1, . . . , gn, u denote fresh pair-

wise distinct variables and let us regroup them in the sets X={x′
1, . . . , x

′
k},

Y={y′
1, . . . , y

′
l}, Q1 = {q1, . . . , qk}, R1 = {r1, . . . , rl}, and G = {g1, . . . , gn}.

We define two instances of the minimum cardinality generator problem. The
first problem P1 is defined as follows:
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A1 = A = X ∪ X1 ∪ Y ∪ Y1 ∪ Q1 ∪ R1 ∪ G ∪ {u}
P1 = Q1 ∪ R1 ∪ G

L1 = {{xi, x
′
i} → A, xi → qi, x′

i → qi | 1 ≤ i ≤ k} ∪
{{yi, y

′
i} → A, yi → ri, y′

i → ri | 1 ≤ i ≤ l} ∪
{zij → gi | 1 ≤ i ≤ n and 1 ≤ j ≤ 3}

where, for 1 ≤ s ≤ k and 1 ≤ t ≤ l, zij is in one of the forms xs, x
′
s, yt, or, y′

t

depending on whether the literal lij in Ci is in one of the forms ¬xs, xs, ¬yt,
or yt, respectively. In other words, zij encodes the negation of lij . Now we define
the second problem P2.

A2 = A, P2 = P1, L2 = L1 ∪ {{y1, . . . , yl} → gi | 1 ≤ i ≤ n}.

Now let A(ϕ) denote the set of all satisfying truth assignments of a #Π1SAT-
formula ϕ and let B(P) denote the set of all solutions of a minimum cardinality
generator problem P. We claim that the following holds:

B(P1) ⊆ B(P2) and |A(ϕ)| = |B(P2)| − |B(P1)| .
Consider the problem P1. Solutions of P1, i.e., minimum cardinality generators
of P1 satisfy the following 3 conditions: (1) An attribute qi can be generated
only in two ways, by the implication xi → qi or by the implication x′

i → qi. So a
solution of P1 contains one of xi and x′

i. Moreover, it cannot contain both of them
due to the implication {xi, x

′
i} → A, since this implication would also generate

the attribute u, and u is not contained in P1. This means, for each 1 ≤ i ≤ k a
solution of P1 contains either xi or x′

i in order to be able to generate the qi’s.
(2) Similarly, it also contains either yi or y′

i for each 1 ≤ i ≤ l in order to be able
to generate the ri’s. (3) In addition to these, in order to be able to generate an
attribute gi, a solution contains at least one attribute that encodes the negation
of a literal occurring in the implicant Ci. In order be able to generate all gi’s,
a solution contains at least one such attribute for each implicant Ci. Subsets
of A that satisfy these 3 conditions are solutions of P1. Each such subset has
exactly the size |X | + |Y | = k + l. Moreover, they are the only solutions of P1,
since any subset of A that has cardinality less than k + l fails to generate at
least one attribute in P1. Conditions (1) and (2) enforce a solution to be a truth
assignment over X ∪ Y . Condition (3) enforces this truth assignment to contain
the negation of at least one literal in every implicant, i.e., it enforces this truth
assignment to falsify the formula ψ(X, Y ).

Consider now the problem P2. Each solution of P1 is also a solution of P2 since
P2 = P1 and L2 contains all implications from L1. In addition to the implications
from L1, L2 also contains implications of the form {y1, . . . , yl} → gi for each
1 ≤ i ≤ n. These new implications give rise to the following new solutions. Like
the solutions of P1, in order to be able to generate the qi’s and ri’s, they satisfy
the conditions (1) and (2) mentioned above. In order to be able to generate
the gi’s, they contain every yi for each 1 ≤ i ≤ l. In other words, these new
solutions are truth assignments over X ∪ Y that set every y1, . . . , yl to true.
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Based on the above descriptions, B(P1) is the set of truth assignments that
falsify ψ(X, Y ) and B(P2) is the set of truth assignments that falsify ψ(X, Y ),
plus the set of truth assignments that set every y1, . . . , yl to true. Obviously, the
claim B(P1) ⊆ B(P2) is satisfied. Moreover, the difference B(P1) � B(P2) is the
set of truth assignments that set every y1, . . . , yl to true and at the same time
satisfy ψ(X, Y ) (since by taking the set difference from B(P1) we remove the
truth assignments that falsify ψ(X, Y )). In other words, this set contains the
models of ψ(X, Y ) such that all Y values are fixed by setting them to true. This
set has exactly the same cardinality as the set of models of ϕ(X) = ∀Y ψ(X, Y ),
thus the other claim |A(ϕ)| = |B(P2)| − |B(P1)| holds. ��

5 Concluding Remarks

We analyzed some decision and counting problems related to generators of closed
sets fundamental in FCA, namely concept intents and implication-closed sets.
We have recalled results from the literature on the problem of checking the ex-
istence of a generator with cardinality less than a specified size, and on the
problem of determining the number of minimal generators. Moreover, we have
defined a new problem, which is determining the number of minimum cardi-
nality generators, and shown that this problem is #·coNP-complete, i.e., it is
even more difficult than counting minimal generators. We have also given an
incremental-polynomial time algorithm from relational databases that can be
used for computing all minimal generators of an implication-closed set.

It is not surprising to see that the mentioned problems about generators of
concept intents and generators of implication-closed sets are of the same com-
plexity. In fact, the closure operator induced by a formal context and the closure
operator induced by the set of implications that are valid in this formal context
coincide. That is, one can easily transfer these results from one case to the other.
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Université Blaise Pascal, Clermont-Ferrand
Rokia.Missaoui@uqo.ca, {nourine,renaud}@isima.fr

Abstract. The objective of this article is to investigate the problem
of generating both positive and negative exact association rules when a
formal context K of (positive) attributes is provided. A straightforward
solution to this problem consists of conducting an apposition of the ini-
tial context K with its complementary context K̃, construct the concept
lattice B(K|K̃) of apposed contexts and then extract rules. A more chal-
lenging problem consists of exploiting rules generated from each one of
the contexts K and K̃ to get the whole set of rules for the context K|K̃.

In this paper, we analyze a set of identified situations based on distinct
types of input, and come out with a set of properties. Obviously, the
global set of (positive and negative) rules is a superset of purely positive
rules (i.e., rules with positive attributes only) and purely negative ones
since it generally contains mixed rules (i.e., rules in which at least a
positive attribute and a negative attribute coexist).

The paper presents also a set of inference rules to generate a subset
of all mixed rules from positive, negative and mixed ones. Finally, two
key conclusions can be drawn from our analysis: (i) the generic basis
containing negative rules, ΣK̃ , cannot be completely and directly inferred
from the set ΣK of positive rules or from the concept lattice B(K), and
(ii) the whole set of mixed rules may not be completely generated from
ΣK alone, ΣK ∪ ΣK̃ alone, or B(K) alone.

1 Introduction

Association rule mining [1] is an extensively studied problem in data mining
and consists of extracting a set of association rules from data (e.g., a set of
transactions describing a collection of items bought together). An association
rule r is an implication of the form Y → Z [sup, conf ], where Y and Z are
subsets of attributes (called itemsets), Y ∩ Z = ∅, and sup and conf represent
the support and the confidence of the rule, respectively. The support of a rule is
defined as Prob(Y ∪ Z) (i.e., the probability that a set of objects have Y ∪ Z)
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while the confidence is computed as the conditional probability Prob(Z/Y ). One
interesting problem is the efficient generation of negative rules like the following
one: customers who buy smoked salmon buy also caviar but not Coke drink. Such
rules may exhibit unexpected patterns such as exceptions (e.g., ostrich is a bird
that exceptionally does not fly).

In this paper we investigate the problem of generating both positive and neg-
ative (exact) association rules in formal concept analysis when a formal context
K of (positive) attributes is initially provided. A straightforward but not effi-
cient solution to this problem consists of conducting an apposition (see Section
2) of the initial context K with its complementary context K̃ to get the concept
lattice B(K|K̃) and then extract the generic basis out of that lattice. How-
ever, data collections in many real-life applications tend to be very sparse and
hence the corresponding complementary contexts are dense, and generate a very
likely huge set of candidate itemsets and a tremendous set of uninteresting rules
(mainly purely negative and mixed ones). To handle our general problem, we
first identify a set of scenarios based on the sorts of the provided input and
discuss their tractability.

Obviously, the set of all rules, called complete set in the rest of the paper, is
a superset of purely positive rules (i.e., rules with positive attributes only) and
purely negative ones since it generally contains mixed rules (i.e., rules in which
at least a negative attribute and a positive attribute coexist). In this paper, we
propose a set of inference rules to deduce mixed rules from positive, negative
and even other mixed ones. However, completeness of the inference rules is not
guaranteed.

The paper is organized as follows. Section 2 provides a background on formal
concept analysis and association rule mining. Section 3 gives a brief overview
about the generation of association rules with negation. Identified problems and
their analysis are described in Section 4 while the generation of positive, negative
and mixed rules is studied in Section 5. Finally, a conclusion and further work
are given in Section 6.

2 Background

2.1 Formal Concept Analysis

Formal concept analysis (FCA) is a branch of applied mathematics, which is
based on a formalization of concept and concept hierarchy. It has been success-
fully used for conceptual clustering and rule generation [9]. Let K = (G, M, I)
be a formal context, where G, M and I are a set of objects, a set of attributes
or properties, and a binary relation between G and M respectively. Two func-
tions, f and g, summarize the links between subsets of objects and subsets of
attributes induced by I. Function f maps a set of objects into a set of its common
attributes, whereas g is the dual for attribute sets:

– f : P(G) → P(M), f(X) := X ′ =: {a ∈ M | ∀o ∈ X, oIa},
– g : P(M) → P(G), g(Y ) := Y ′ := {o ∈ G | ∀a ∈ Y, oIa}.
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The operators g ◦ f and f ◦ g (denoted by ′′) are closure operators over P(G)
and P(M) respectively.

A formal concept C is a pair of sets (X, Y ) where X ∈ P(G), Y ∈ P(M),
X = Y ′ and Y = X ′. The closed subset X is called the extent of C, and Y its
intent. In the association rule mining problem [1,15,23,20], X and Y correspond
to the notion of closed tidset (e.g., a set of transactions or objects) and closed
itemset (e.g., a set of bought items) respectively.

The set B(K) of all concepts extracted from the context K, partially ordered
by:

(X1, Y1) ≤ (X2, Y2) ⇔ X1 ⊆ X2, Y2 ⊆ Y1.

forms a complete lattice, called a concept lattice.
Object (resp. attribute) set reduction of a context K = (G, M, I) consists of

discarding from the set G (resp. M) all objects (resp. attributes) that may be
obtained through the intersection of some other objects (resp. attributes). The
concept lattice of a reduced context is isomorphic to the concept lattice of the
initial one.

The apposition K = K1|K2 of two contexts K1 = (G, M1, I1) and K2 =
(G, M2, I2) is the horizontal concatenation of contexts sharing the same set G of
objects [9]. It represents the context K = (G, M1∪̇M2, I1∪̇I2) whose correspond-
ing lattice is a substructure of the direct product of B(K1) and B(K2) [19].

In the rest of the paper and unless otherwise indicated, we will use upper-
case letters (e.g., B, Y ), lower-case letters and letters with tilde to mean sets of
attributes (itemsets), atomic attributes and elements with negation respectively.
For example, ã stands for the negation of attribute a and means that object
o belongs to the extent of ã iff o does not belong to the extent of a, and Ã
represents the set {ã | a ∈ A} [8].

2.2 Association Rule Mining

One interesting trend in association rule mining is to use formal concept analysis
to extract frequent closed itemsets (i.e., closed itemsets having a support greater
than or equal to a predefined value) and compute a reduced set of association
rules. A set of studies in FCA were conducted on the generation of concise repre-
sentations (i.e., minimal bases) of rules [12] such as informative rules (i.e., with
minimized premise and maximized consequence), Guigues-Duquenne basis [9,10],
generic basis [15], Luxenburger basis, and so on.

A generic basis [15] associated with a context K, denoted by ΣK , is a concise
representation of exact rules (implications) of the form r: Y → Y ′′\Y [sup, 1]
such that Y is a generator for Y ′′. The (minimal) generator Y [16] of a closed
itemset Z is a minimal subset of Z such that Y ′′ = Z. The support of the rule
r is |Y ′|/|G|.

Since we are using the generic basis as a container for the extracted rules, any
rule in ΣK , ΣK̃ and ΣK|K̃ will be further represented by: Y → Z [sup] because
the confidence is always equal to 1.
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2.3 Illustrative Example

To further illustrate notions and propositions, let us take the following example in
which a context K = (G, M, I) is given, with G = {1, 2, 3, 4} and M = {a, b, c, d}.
The corresponding concept lattice1 is illustrated in Figure 1.

Example 1

The following table provides the complete set of rules generated from Example 1.

Table 1. A context K, its complementary context K̃ and the apposition K|K̃ of the
two contexts

K a b c d

1 1 0 0 1
2 0 1 0 1
3 1 1 0 0
4 0 1 1 1

K̃ ã b̃ c̃ d̃

1 0 1 1 0
2 1 0 1 0
3 0 0 1 1
4 1 0 0 0

K|K̃ a b c d ã b̃ c̃ d̃

1 1 0 0 1 0 1 1 0
2 0 1 0 1 1 0 1 0
3 1 1 0 0 0 0 1 1
4 0 1 1 1 1 0 0 0

A first glance at Table 2 indicates that rules in ΣK (i) do not convey interesting
information about the absence of some items, and (ii) rules with a null support
seem useless. However, the set ΣK|K̃ brings additional associations about the
absence of items, and we will see later that rules with a null support (either in
ΣK or ΣK̃) can be exploited to generate mixed rules.

Fig. 1. The concept lattice B(K|K̃) corresponding to Example 1

3 Related Work

In the classical problem of association rule mining, only attributes (items) present
in data are recorded and positive rules are extracted. This class of rules is a sub-
class of the larger and more general set of boolean association rules (i.e., rules with
negation, conjunction and disjunction) [13].
1 The lattice is constructed with reduced labelling using the SourceForge project called

Concept Explorer.
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Table 2. Positive, negative and complete rule set of Example 1

Positive rules Negative rules Complete set of rules
ΣK ΣK̃ ΣK|K̃

c → bd[0.25] b̃ → c̃[0.25] a → c̃[0.5] abd → ãb̃cc̃d̃[0]

ac → bd[0] d̃ → c̃[0.25] bd → ã[0.5] ac → ãbb̃c̃dd̃[0]

abd → c[0] ãb̃ → c̃d̃[0] ad → b̃c̃[0.25] ãd̃ → abb̃cc̃d[0]

ãd̃ → b̃c̃[0] c → ãbd[0.25] b̃d̃ → aãbcc̃d[0]

b̃d̃ → ãc̃[0] ab → c̃d̃[0.25] ãb̃ → abcc̃dd̃[0]

ã → bd[0.5] aã → bb̃cc̃dd̃[0]

b̃ → adc̃[0.25] bb̃ → aãcc̃dd̃[0]

d̃ → abc̃[0.25] cc̃ → aãbb̃dd̃[0]

ãc̃ → bd[0.25] dd̃ → aãbb̃cc̃[0]

bc̃d → ã[0.25] b̃c → aãbc̃dd̃[0]

cd̃ → aãbb̃c̃d[0]

Association rules with negation could be in one of the following forms:

– B ∧ C̃ → D indicating that if an object owns all the items in B and does
not have the items in C (i.e., has all the items in C̃), then it owns all the
items in D.

– B → C ∧D̃ indicating that if an object owns all the items in B, then it owns
all the items in C but does not have anyone of the items in D.

– B̃ → C̃ indicating that if an object does not own the items in B, then it
does not have the items in C.

The expressions mixed rules and purely negative rules will be used to refer to
the first two forms and the last form, respectively.

In the area of data mining, the notion of negative associations (relationships)
between itemsets was initially discussed by Brin and Motwani [5] who proposed
a procedure that exploits the Chi-square test to search for a border between
correlated and uncorrelated elements in the itemset lattice. Many studies recog-
nize that mining rules with negation (i.e., rules that contain negative items) is a
very challenging problem [4] and there is an urgent need to define interestingness
measures (other than confidence) and pruning procedures to generate negative
association rules in an efficient and correct way [3,5,21]. For example, Wu et al.
[21] define a new algorithm for negative association rule generation as well as
a new quality measure for an efficient pruning of generated frequent itemsets.
In [17], positive frequent itemsets are combined with background knowledge to
mine negative association rules, while in [2] a new technique based on Kullback-
Leibler divergence is defined.

The notion of negative rules has different meanings. In [17], it represents rules
of the form Y � Z whose actual support deviates at least MinRI × MinSup
from its expected support (based on the support of items in closed itemsets and
the taxonomy on attributes). MinRI and MinSup correspond to the minimal
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value of an interest measure RI and the support, respectively. In [4], the rule
Y → Z̃ means that the presence of items in Y implies the absence of all items
in Z.

Mining association rules with negation cannot be studied by a simple adapta-
tion of work on discovering positive association rules. Indeed, the former raises
new problems such as dealing with non frequent itemsets, assigning meaningful
interpretation to negation and computing appropriate interestingness measures
that reflect the negative associations among itemsets. For database miners, neg-
ative rules may help identify unexpected (surprising) patterns and suggest item
substitution [22].

4 Problem Statement

In this section we identify a set of problems related to the generation of both
positive and negative association rules from a finite formal context. To conduct
our analysis, we consider the production of the generic basis with a support
greater than or equal to 0 and we take a set of distinct situations whose analysis
is summarized in Table 3. Both positive and negative rules with a null support
will be used to infer some (not necessarily all) mixed rules as will be explained
later.

There are several situations that we have identified when analyzing the is-
sue of generating rules with negation. In the following, we describe each situa-
tion/problem and discuss its complexity.

Problem 1 : Positive Rule Generation (PRG)
Instance: A formal context K = (G, M, I).
Question: Compute ΣK .

As stated, the PRG problem aims to compute the set of positive rules when a
formal context K is given. This is a classical problem in FCA and association
rule mining that has been extensively studied and lead to a set of algorithms
for minimal rule set generation and efficient computation [10,9,23,15,12,20]. The
complexity of this problem is still open for some specific cases [7] and has been
discussed in many studies (see e.g., [6,11]).

Problem 2 : Negative Rule Generation (NRG)
Instance : A formal context K = (G, M, I).
Question : Compute ΣK̃ .

This problem consists of generating a set of purely negative rules given a for-
mal context K. It is almost equivalent to the previous one except that a pre-
computation of the complementary context K̃ is handled before the generation
of rules. However, since most real-life formal contexts are sparse, complementary
contexts are therefore dense and lead to an exponential number of concepts (and
closed itemsets) and possibly large sets of purely negative rules. In a transac-
tion database, for example, a customer’s basket contains a reduced set of items
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compared to the large set of items that could be provided in the market. There-
fore, the corresponding context is sparse since there are more absent items than
present ones in individual transactions.

Problem 3 : Complete Rule Generation (CRG)
Instance: A formal context K = (G, M, I).
Question: Compute ΣK|K̃ .

Starting from a given context K, we first compute its complementary context K̃
and the apposition K|K̃ of context K and K̃, and then compute from B(K|K̃)
the complete set of rules that includes all positive, negative and mixed ones.
The complexity of this problem is similar to the previous ones. Moreover, the
observation about the sparsity/density of contexts holds for this case too.

Problem 4 : Dual Rule Generation (DRG)
Instance: A formal context K = (G, M, I) and ΣK .
Question: Compute ΣK̃ .

This problem takes both the context and the set of positive rules as input to
attempt to compute the set ΣK̃ of purely negative rules. The size of the output
may be exponential in the size of the input, and hence a polynomial algorithm
is impossible. The following example illustrates this observation.

Example 2. Consider the context K = (G, M, I) with G = {1, ..., n − 1}, M =
{a1, a2, ..., an} and (i, an−i+1) ∈ I. This means in particular that no object has
property a1. The generic bases ΣK and ΣK̃ are given by:

– ΣK = {a1 → M\{a1} [0] ∪ {aiaj → a1 [0] | i, j ∈ {2, ..., n}, i = j}
– ΣK̃ = {Ã → ã1[sup] | ∅ ⊂ Ã ⊆ M̃\{ã1} where sup=0 when Ã = M̃\{ã1}.

Thus, |ΣK | = 1 + (n − 1)(n − 2)/2 and |ΣK̃ | = 2n−1 − 1.

It is important to note that the set ΣK cannot be used alone to generate ΣK̃

since it does not give information about the binary relation that holds between
objects and attributes. The following example illustrates this fact by showing
that for a given ΣK , there may exist more than one context and hence more
than one ΣK̃ .

Example 3. Consider the following contexts where K1 is a reduced context of
K2 with respect to objects. Indeed, K2 is not reduced since f(7) = f(2) ∩ f(3).
Obviously, ΣK1 and ΣK2 have the same set of rules (where matching rules have
distinct non null supports) since B(K1) is isomorphic to B(K2). The set of
positive rules is given by: {ad → bc [0], bd → ac [0]}. The computation of purely
negative rules leads to two different sets:
ΣK̃1

= {ãc̃ → b̃ [0.16], b̃c̃ → ã [0.16], ãc̃d̃ → b̃ [0], ãb̃d̃ → c̃ [0], b̃c̃d̃ → ã [0]}
ΣK̃2

= {ãc̃ → b̃ [0.14], ãc̃d̃ → b̃ [0], ãb̃d̃ → c̃ [0]}.

Problem 5 : Negative Concept Generation (NCG)
Instance: A formal context K = (G, M, I) and B(K) the lattice of K.
Question: Compute B(K̃).



176 R. Missaoui, L. Nourine, and Y. Renaud

K1a b c d e

1 1 1 0 0 0
2 1 0 0 0 1
3 1 1 1 0 1
4 1 1 0 1 1
5 0 1 0 0 1

K2a b c d e

1 1 1 0 0 0
2 1 0 0 0 1
3 1 1 1 0 1
4 1 1 0 1 1
5 0 1 0 0 1

6 1 1 0 0 1

K1 K2

Fig. 2. K1 is a reduced context of K2

In this case, the size of the output may be exponential in the size of the input (see
Example 4 below). However, concepts in B(K̃) may be generated in a polynomial
total time from K [14].

Example 4. Consider the context K = (G, M, I) with G = {1, ..., n}, M =
{a1, a2, ..., an} and (i, ai) ∈ I. This context K has n + 2 concepts, while the
complementary context K̃ has 2n concepts.

Problem 6 : Complete Rule Generation from Concepts (CRGC)
Instance: A formal context K = (G, M, I) as well as the lattices B(K) and
B(K̃) produced from K and K̃, respectively.
Question: Compute ΣK|K̃ .

This problem can be solved by first performing the assembly of B(K) and B(K̃)
as a substructure of the direct product of these lattices [19], and then computing
the set of rules. The size of the resulting lattice B(K|K̃) is generally less than
the size of the product of the two initial lattices. However, the drawback of this
straightforward solution is that if one of the two contexts is dense and large,
it will generate an impressive number of concepts and lead to an important
execution time for concept and rule generation.

Corollary 1. CRGC is polynomial.

Problem 7 : Complete Rule Generation Twice (CRGT)
Instance : ΣK and ΣK̃ .
Question : Compute ΣK|K̃ .

If the input elements ΣK and ΣK̃ are not already computed, their calculation is
done in a polynomial time with respect to the size of concept lattices B(K) and
B(K̃).

This problem is open and will be discussed in the next section where we
illustrate through an example that ΣK|K̃ is not unique when ΣK and ΣK̃ are
given.

The following table summarizes the identified problems in terms of the input,
output, complexity and size of the output.
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Table 3. List of problems and their related complexity

Problem Input Output Class of Complexity Size of the output

1. PRG K ΣK open exponential
2. NRG K ΣK̃ open exponential
3. CRG K ΣK|K̃ open exponential

4. DRG K, ΣK ΣK̃ open exponential

5. NCG K, B(K) B(K̃) polynomial exponential

6. CRGC K, B(K), B(K̃) ΣK|K̃ polynomial polynomial

7. CRGT ΣK , ΣK̃ ΣK|K̃ open open

5 Complete Set of Association Rules

As indicated earlier, the complete set of association rules includes purely positive
ones, purely negative ones as well as mixed rules. While the first two sets are
relatively easy to compute, the last group raises some challenging issues if we
attempt to generate mixed rules based only on the information about purely
positive and purely negative rules. In this section, we propose a set of inference
rules to deduce a partial set of mixed association rules, using either positive,
negative or even mixed association rules. Then, we show that in general cases, it
is impossible to compute all mixed rules from the sets of positive and negative
association rules.

It is important to note that the first four propositions making reference to
context K and its corresponding generic basis ΣK can be adapted to hold for K̃
and its related generic basis ΣK̃ .

5.1 Properties

Let K = (G, M, I) be a formal context, ΣK the set of positive association rules
and ΣK̃ the set of negative association rules. For every attribute x, a concept of
K|K̃ cannot contain x and x̃ unless its extent is an empty set.

Property 1. For all x ∈ M , we have xx̃ → MM̃\{xx̃} [0] ∈ ΣK|K̃ .

Proposition 1. Let K be a context, and A → B [sup] ∈ ΣK an association rule
with sup > 0. Then, A → B is derivable from rules in ΣK|K̃ by Armstrong’s
inference axioms2 [18].

Proof. If A → B [sup] ∈ ΣK , then there are two concepts: C = (X, A ∪ B) in
B(K) such that A is a generator of the intent A∪B, and C′ = (X, T ) in B(K|K̃)
such that A ∪ B ⊆ T . In particular, A → B [sup] holds with the same set X of
supporting objects in ΣK|K̃ . ��
2 The inference system for functional dependencies includes reflexivity, augmentation,

and transitivity axioms. Additional axioms are: union, decomposition and pseudo-
transitivity.
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Based on our previous remark, the above proposition also holds for any negative
rule C̃ → D̃. For example (see Table 2), b̃ → c̃ [0.25] ∈ ΣK̃ can be inferred from
b̃ → adc̃ [0.25] ∈ ΣK|K̃ .

Given an initial context K, the following proposition shows that extracted
positive association rules with a non null support help generate some mixed
association rules of the context K|K̃.

Proposition 2. Let K be a context and Ax → y [sup] ∈ ΣK an association rule
with sup > 0. Then Aỹ → x̃ [sup1] is an association rule in K|K̃, with sup1

possibly different from sup.

Proof. We consider two distinct cases:

– Y is a closed itemset (intent) of K|K̃ such that Aỹ ⊆ Y . Since Ax → y ∈
ΣK|K̃ (by Proposition 1), the attribute x cannot be in Y because otherwise
Y contains y. Therefore, Aỹ → x̃ ∈ ΣK|K̃ .

– Y is not a closed itemset of K|K̃ such that Aỹ ⊆ Y . Then, Aỹ → M ∪ M̃ [0],
and subsequently Aỹ → x̃. ��

For example (see Table 2), from c → bd [0.25] in ΣK , one can infer b̃ → c̃d [0.25]
and d̃ → c̃b [0.25].

In a similar way, we show that we can deduce some mixed association rules
using positive association rules with a null support.

Proposition 3. Whenever the association rule Ax → M\{Ax} [0] holds in ΣK,
then the rule A → x̃ [sup] holds in ΣK|K̃ (with sup > 0), and vice versa.

Proof. If Ax → M\{Ax} ∈ ΣK has a null support, then there is no closed set
other than M ∪ M̃ in K|K̃ which contains Ax. Thus, any closed set of K|K̃
which contains A, does not contain x and therefore contains x̃. Moreover, since
a generic basis uses the notion of generator to extract exact rules, the closure of
A is a proper subset of M ∪ M̃ . Therefore, there exists at least one object in G
which owns the attributes in A, and hence sup > 0. Conversely, if A → x̃ [sup]
holds in K|K̃, then there does not exist a rule in ΣK with a premise Ax and a
non null support. Consequently, Ax → M\{Ax} [0] holds in ΣK . ��
Example 5. From rule abd → c [0] in ΣK (see Example 1), one can infer ab →
d̃ [0.25], ad → b̃ [0.25], and bd → ã [0.5] in ΣK|K̃ . Conversely, from ad → b̃ [0.25],
one can infer that abd → M\{a} [0] holds in ΣK .

The following proposition states that when a context K has at least one object
with all the attributes in M , then there does not exist a mixed rule of the form
A → x̃.

Proposition 4. Let K = (G, M, I) be a formal context. If the infimum of the
lattice has a non empty extent ( i.e., at least one object in K has all the attributes
in M), then A → x̃ [sup] ∈ ΣK|K̃, with sup not null and for any A ⊆ M and
x̃ ∈ M̃ .
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Proof. Let A ⊆ M and o be an object in G which owns all attributes in M .
Clearly, the extent corresponding to A must contain o and the closure of A in
K|K̃ does not include any x̃ ∈ M̃ since the complementary tuple of o in K̃
contains zero values only. ��
The following example illustrates this proposition.

Example 6. Object 5 owns all attributes and any subset A in M (e.g., bd, bcd)
can not imply a negative item (with a non null support).

K|K̃ a b c d ã b̃ c̃ d̃
1 1 0 0 1 0 1 1 0
2 0 1 0 1 1 0 1 0
3 1 1 0 0 0 0 1 1
4 0 1 1 1 1 0 0 0
5 1 1 1 1 0 0 0 0

Proposition 5. The rule A → x̃ [sup] ∈ ΣK|K̃ for A ⊆ M ∪ M̃ is equivalent
to Ax → MM̃\{Ax} [0] ∈ ΣK|K̃.

This proposition is a generalization of Proposition 3 to the case of A ⊆ M ∪
M̃ , and helps infer new mixed rules from existing ones. For example, adb →
MM̃\{adb} [0] is inferred from ad → b̃ [0.25].

Proof. This statement can be proved by conducting a reasoning similar to the
one provided for Proposition 3. ��

5.2 Computation of Mixed Rules from Positive and Negative Rules

In this part, we show that the sets of purely positive and purely negative rules
are not enough to infer the whole set of mixed rules. The reason is that different
formal contexts can be associated with a same couple of sets ΣK and ΣK̃ .

Example 7. Consider K1 as a reduced context of K2 where f(6) = f(3) ∩ f(4)
in K2. The sets ΣK1 and ΣK2 have the same collection of rules but matching
rules have distinct (non null) supports because the number of objects in K1 is
smaller than the object set in K2. In this special case, ΣK̃1

and ΣK̃2
have also

the same set of rules. However, ΣK1|K̃1
is different from ΣK2|K̃2

. For example,
abc̃d̃ → ẽ [0.2] belongs to ΣK1|K̃1

but does not appear in ΣK2|K̃2
.

This example illustrates the fact that if we consider positive and negative asso-
ciation rules without key information about the corresponding context, it is not
possible to generate in a unique way the whole set of mixed association rules.

Proposition 6. Given a set ΣK of purely positive rules and a set ΣK̃ of purely
negative rules extracted from a context K, then rules in ΣK|K̃ may not be com-
pletely derivable from ΣK and ΣK̃ using the proposed inference rules.

Proof. Since for a same set of (positive or negative) rules, there may exist more
than one context, the apposition K|K̃ will lead to different contexts and hence
different sets ΣK|K̃ .
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K1a b c d e

1 1 1 0 0 0
2 1 0 0 0 1
3 1 1 1 0 1
4 1 1 0 1 1
5 0 1 0 0 1

K2a b c d e

1 1 1 0 0 0
2 1 0 0 0 1
3 1 1 1 0 1
4 1 1 0 1 1
5 0 1 0 0 1

6 1 1 0 0 1

K1 K2

Fig. 3. K1 is a reduced context of K2

6 Conclusion

This paper studies the problem of computing the generic basis of positive, neg-
ative and mixed rules from a given input. To that end, a set of situations
are proposed based on the type of available input (e.g., the formal context
K = (G, M, I), the set ΣK of positive rules, the concept lattice B(K)) and
the sort of output to produce (e.g., B(K), the set of negative rules ΣK̃ , the
whole set of rules ΣK|K̃).

We also propose a set of inference rules to deduce a partial set of mixed asso-
ciation rules, using either positive, negative or mixed rules. Then, we illustrate
through an example the fact that the sets of positive and negative association
rules are not enough to generate the whole set of mixed rules.

We are currently working on the characterization of mixed rules that are
missed by our inference rules and the efficient computation of the complete set
of rules ΣK|K̃ .

Since generators are needed for generic basis computation, we plan to study
the case when the generators associated with concepts in contexts K and K̃ are
given, and design an efficient algorithm for computing concepts, generators and
rules for context K|K̃.
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Abstract. Formal concept analysis (FCA) has a significant appeal as a formal
framework for knowledge discovery not least because of the mathematical tools
it provides for a range of data manipulations such as splits and merges. We study
the computation of the canonical basis of a context starting from the bases of two
apposed subcontexts, called factors. Improving on a previous method of ours,
we provide here a deeper insight into its pivotal implication family and show
it represents a relative basis. Further structural results allow for more efficient
computation of the global basis, in particular, the relative one admits, once added
to factor bases, an inexpensive reduction. A method implementing the approach
as well as a set of further combinatorial optimizations is shown to outperform
NextClosure on at least one dataset.

1 Introduction

Since the early eighties, formal concept analysis (FCA) [10] has developed as a series
of technics for representing and structuring qualitative data. Albeit rooted in lattice
theory [3], it has produced a strong impact in data analysis and later on in data mining,
generating a large body of work on closed-itemset representations [16, 25, 17] and
association rule bases [19, 24], within the association rule mining (ARM) discipline [1].
This impact is a direct consequence of the double concern within FCA with both the
concept systems (formalized as lattices) and the implication families stemming out of a
tableau-shaped binary relation (formal context).

The duality between lattices (equivalently in the finite case semilattices/closure op-
erators, etc.) and implications (also called rules/dependencies) can be simply spelled:
in extracting a semilattice out of a Boolean lattice, the more elements one removes, the
more implications are generated and vice versa. Hence semilattices and implicational
systems represent two sides of a same reality indicating, roughly speaking, what is ex-
isting/missing in the data. The relationship between lattices and implications has always
been a key concern in FCA [23]. Noteworthily, this duality is known and used in the
theory of relational databases [5] and in artificial intelligence [13, 12]. For instance,
in database normalization theory, the computation of a minimal cover of a family of
functional dependencies is a major task whose resolution makes extensive use of that
duality [14, 15].

Usually, when dealing with combinatorial objects, a first concern is to put them in
some “canonical” form. For a lattice such a form is the reduced standard context that
only comprises irreducible intents from the semi-lattice. The implicational system can
in turn be reduced to a basis of minimal size whereby the canonical basis [11] (called

R. Medina and S. Obiedkov (Eds.): ICFCA 2008, LNAI 4933, pp. 182–198, 2008.
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Duquenne-Guigues in FCA’s folklore [10], section 2.3) enjoys a particular status among
all possible bases since uniquely defined. It is defined on top of the family of pseudo-
closed of a binary relation which are still much of a challenge since their inherently
recursive definition prevents an easy computation.

A second concern arises with the combinatorial generation of lattices and canoni-
cal bases. Both problems are hard ones as the respective target structures may grow
exponentially in the size of the input context.

The overall goal of our study is to improve the construction of the canonical basis
by revisiting a product/merge-based approach. The latter has proven efficient on lattice
construction [21], by embedding the lattice into a semilattice product of its factors. The
motivation behind our study is three-fold:

1. From a practical viewpoint, in cases where the two factor lattices/bases are already
computed, reusing them to speed-up the computation the global canonical basis is a
matter of principle. This will be useful for data merging purposes or, alternatively,
for revision/maintenance of analysis results in time. Even if the factor results are
not given beforehand, in many situations it might still be advantageous to operate
the problem reduction with the split-process-merge schema.

2. On the algorithmic axis, we look for a new compromise between time/memory
consumption in basis computation. While the classic NEXTCLOSURE algorithm [9,
10] requires minimal memory allocation, our proposal achieves a significant search
space reduction through the factor result reuse which is expected to save significant
amount of time. In fact, although the direct product of two semi-lattices might be
huge, it will usually remain much smaller than the powerset of the attributes.

3. From a methodological viewpoint, we are intrigued by the potential gains from
mixing the use of merge/apposition of contexts/product of semilattices with the
simultaneous computation of both the lattice and the canonical basis. In this respect,
summarizing the gap between a merged lattice and the full product of its factors –
at last providing tools to decipher the structure of a nested line diagram – can be
most useful as a measure of what could be called algebraic independence between
two factors.

Yet the pseudo-closed sets of a context, unlike closed ones, do not project on pseudo-
closed of the apposed factors, whereas their strongly recursive nature of pseudo-closed
sets imposes ordering constraints on their generation. Consequently, a direct product-
based generate-and-test approach as in [21] will not work.

In [20] we presented a first method for computing the canonical basis from factor
bases and intent semilattices. It exploits what we called the hybrid implications, i.e.,
whose premises mix attributes from both factor contexts, and defines a basis thereof.
The hybrid basis is computed step-wise along a traversal of the direct product of the
factor semilattices. As hybrid and factor canonical bases jointly form a cover of the
global basis, the latter is yielded through a classical reduction [15].

Here we propose a further insight into the relationships between the global and the
factor pseudo-closed families that underlies an alternative basis definition which also
exploits the notion of relative pseudo-closedness as defined in [18]. Additional struc-
tural results are provided that enabled the design of a more parsimonious reduction
method for the cover of the canonical basis.
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In what follows, we first recall the theory behind concept lattices, lattice assem-
bly and the canonical basis (section 2). Then we summarize the original approach for
merging factor bases (section 3). Next, the new basis definition and the corresponding
algorithmic design are presented (section 4) followed by the results on reduction and
the method description (section 5). Finally, details about current implementation and
some performance evidence are provided (section 6).

2 Background on Relevant FCA Notions

Formal concept analysis (FCA) [10] studies the various combinatorial structures in-
duced by a Galois connection [6] between two power-set lattices and approaches these
from both theoretical and applied, i.e., data analysis, standpoints.

2.1 Contexts, Concepts and Lattices

We use the standard FCA constructs and terminology (see [10]) except for a small set of
notations. Thus, we consider a dataset made of objects (O) described by attributes (A)
which are introduced by a two-way data table K, the (formal) context, expressing the
incidence relation I between objects and attributes. Two derivation operators ′ expand
I: the object one maps sets of objects to the maximal sets of attributes that are shared
by the objects while the attribute one works dually. Both ′ operators form a Galois
connection between ℘(O) and ℘(A) whose closed subset families, denoted hereafter
Co
K and Ca

K, respectively, once provided with set-theoretic inclusion form two semi-
lattices that are dually isomorphic. The pairs of mutually corresponding closed sets,
i.e., the concepts ((X, Y ) where X = Y ′ and Y = X ′), constitute a complete lattice,
the concept lattice of K (aka the Galois lattice of I). Fig. 1 shows a sample context
(left) and its lattice (right).

2.2 Implications

An implication (aka functional dependency) X → Y (X, Y ⊆ A) is an implicit asser-
tion that “any object having X also has Y ”. X → Y is valid in a context whenever no

a b c d e f g h i

1 x x x
2 x x x x
3 x x x x x
4 x x x x x
5 x x x x
6 x x x x x
7 x x x x
8 x x x x
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34 36
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Fig. 1. A sample context (left) and its corresponding concept lattice (right). Both adapted
from [10].
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object violates it, which basically amounts to Y ⊆ X ′′ (Prop. 19 in [10]). Given K, its
family of valid implications, ΣK, is usually prohibitively large whereas many implica-
tions are redundant. Redundancy reduces to derivation (|=) between implication sets:
Σ1 |= Σ2 means, in FCA-terminology, that contexts validating Σ1 necessarily validate
Σ2 too (Σ1 is called a cover of Σ2). X → Y is redundant within Σ ⊆ ℘(A)2 if it
can be derived from the the rest of Σ, i.e., Σ − {X → Y } |= X → Y . Armstrong
axioms [2] automate derivation yet the Σ-closure operator [15] (denoted Σ) is more
practical. Given Y , Y Σ is the infinite member X∞ of the sequence X i below:

X0 = Y ; Xk+1 = Xk ∪
⋃

Z→T∈Σ;Z⊆Xk

T

It is readily shown that for any K both closure operators are identical, i.e., for all Y ⊆ A,
Y ′′ = Y ΣK . Now redundancy of X → Y in Σ means its removal does not change the
closure operator, i.e., Y ⊆ XΣ−{X→Y }.

A non-redundant cover of ΣK, i.e., one free of redundant implications, whose car-
dinality is minimal, is a minimal cover [14]. Similar to reduced contexts for lattices
minimal covers of ΣK represent it in the most compact way. Among all possible min-
imal covers, the canonical basis, also known as Duquenne-Guigues [11] or stem ba-
sis [10], is the only one admitting a unique definition. A generalization thereof is used
here which comprises a set of a priori implications (due to Stumme [18]). Thus, given
K = (O, A, I) and Ω ⊆ ΣK, the Ω-basis of K, BΩ is composed of all implications
Y → Y ′′ where Y is Ω-pseudo-closed as defined below:

Definition 1. Given a context K = (O, A, I) and a set of valid implications Ω ⊆ ΣK,
a set Y ⊆ A is a pseudo-closed relative to Ω (or Ω-pseudo-closed) if:

– Y �= Y ′′,
– Y = Y Ω (closed for Ω, but not for ΣK),
– for each Ω-pseudo-closed Z , Z ⊂ Y entails Z ′′ ⊆ Y .

BΩ behaves like a minimal cover relative to Ω, i.e., (i) BΩ ∪ Ω |= ΣK, (ii) it is non-
redundant modulo Ω (∀X → Y ∈ BΩ , Ω ∪ BΩ − {X → Y } �|= X → Y ), and (ii) has
minimal cardinality. To get the standard canonical basis BK, Ω is set to ∅ in Definition 1
which yields the pseudo-closure family PCK. BK of the running example is:

adg → bcefhi abcghi → def acg → h ah → g → a
acdef → bghi ai → cgh abd → f ae → cd af → d

Furthermore, PCK ∪Ca
K defines a richer closure semi-lattice whose closure operator

is a refinement of ΣK (which, trivially, equals BK). Thus, following Prop. 26 in [10],
the operator B �=

K on Y ⊆ A is defined as the infinite member X∞ in:

X0 = Y ; Xk+1 = Xk ∪
⋃

Z→T∈BK;Z�Xk

T

Observe that testing X for pseudo-closedness only requires the portion of BK made
of implications Y → Z where Y ⊂ X : X fails the test iff an invalidating implica-
tion is found (Y ⊂ X and Z �⊂ X). Hence the BK could be computed gradually
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provided the pseudo-closures are generated in an order compatible with set inclusion
(see NEXTCLOSURE in Section 2.4). The otherwise recursive generation is grounded
on the layer of minimal pseudo-closures which correspond to the minimal non-closed
sets (min(PCK) = min(℘(A) − Ca

K)).
In a further restriction of the admitted implications from a cover Θ |= ΣK, one bans

all rules whose premises have the same ′′-closure as the argument set Y . This yields
the saturation operator [8], denoted Θ⊗ 1. The Θ⊗

closures are called quasi-closed
sets. Their family, QCK, comprises, but is not limited to, both ′′ closures and pseudo-
closures: PCK ∪ Ca

K ⊆ QCK. Within QCK, pseudo-closures are uniquely determined
as both non ΣK-closed and minimal for their respective ΣK-closures.

2.3 Context Splits and Lattice Products

Two contexts sharing their objects are said to be apposed if they agree on all common
attributes (see Chap.3 in [10]). Thus, given K1 = (O, A1, I1) and K2 = (O, A2, I2), the
context K3 = (O, A1∪̇A2, I1∪̇I2) is called the apposition of K1 and K2. Apposition
models in a natural way useful manipulations of relational database such as vertical
table splits (in a distributed database) or projections upon complementary views. For
example, the context in Fig. 1, can be split into two sub-contexts by dividing A into
A1 = {a, b, c, d} and A2 = {e, f, g, h, i}. The corresponding lattices, further referred
to as factor ones, L1 and L2, are drawn on the left-hand-side of Fig. 2. The canonical
bases B1 and B2 are given below:
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Fig. 2. Left: Factor lattices L1 and L2 of the apposed contexts in Fig. 1; Right: The NLD thereof.

B1 B2

→ a i → gh h → g fg → ehi
eg → fhi ef → ghi

1 Summarizes the direct determination relation between sets as in [14].
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A natural question is how L3 relates to factors L1 and L2. In fact, L1 and L2

only represent real factors, i.e., constructed by means of a congruence relation, when-
ever reduced to their (intent) join-semi-lattices [10]. In the extreme case, L3 will be
isomorphic to the direct product of the factors, L1 × L2 (denoted shortly L1,2 here-
after), while in general it will be merely isomorphic to a join sub-semi-lattice of L1,2.
Spelled in more intuitive terms, the global intents in Ca

3 are unions of two factor in-
tents, one from each Ca

i (i = 1, 2). However, some unions in the resulting family
Ca
1,2 = {Y1 ∪ Y2 | Yi ∈ Ca

i , i = 1, 2} may be non closed in K3.
Apposition underlies the nested line diagrams (NLD) visualization mode for lat-

tices [10] which typically presents L3 as embedded into L1,2. The embedding of the
example global lattice into the factor product is illustrated on the right-hand-side of
Fig. 2 where filled nodes correspond to concepts (global intents in Ca

3 ) and unfilled
ones to non-closed factor intent unions from Ca

1,2.

2.4 Computing the Canonical Basis

The interplay between implications and intents, on the one hand, and between exhaus-
tive structures and minimal representations, on the other hand, generates a number of
challenging problems, many of whom are known to be hard2.

The computation of the canonical basis and of the pseudo-closed family has been ex-
plored under various settings yet few practical algorithms have been published. Among
them, NEXTCLOSURE [9] is the reference. In fact, NEXTCLOSURE is a generic al-
gorithm for computing the closed sets of any closure operator provided as parameter.
Thus, for computing Ca

K, the ′′ operator is enough while PCK requires also B �=
K (jointly

emulated by BK and the traversal order).
Technically speaking, it behaves as a typical listing procedure, i.e., one using a

canonical representation for concept intents to generate them according to a fixed to-
tal order (called lectic). The search space, i.e., the Boolean lattice 2A, is traversed in
an ascending lectic order while computing the closure of the current element. Though a
closure may be computed several times, it is only validated whenever canonically gener-
ated, i.e., by a minimal generating prefix thereof. The perceived strength of NEXTCLO-
SURE is in its minimal memory requirements – a single cell is used to store the current
closure – whereas a perceived weakness thereof is the high number of computed clo-
sures (targeted with various optimization techniques).

In [8], PCK is targeted with saturation. The starting point is the set of all minimal
generators, i.e., X s.t., ∀ Y ⊂ X , Y ′′ ⊂ X ′′, which are not closed whereas the satura-
tion exploits the respective implications X → X ′′.

BK can also be computed as a minimal cover of ΣK by starting with an arbitrary
cover thereof, say Θ, and applying a reduction procedure to Θ as described above.
Classical reduction merely removes the redundant rules X → Y one by one while
examining Θ in an arbitrary order. In fact, the removed rules fall in two categories: (i)
rules for which there is no pseudo-closure in the order interval [X, XΘ], and (ii) rules
capturing a pseudo-closure for which another rule exists in the yet unreduced part of Θ.
A polynomial algorithm for the task, LINCLOSURE (see Chap. 4 in [15]) jointly applies

2 M. Wild proposes an exhaustive and insightful presentation of these problems in [22].
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indexing and counters to avoid re-scaning of the entire implication set at each step of
the iterative computation of XΣ−{X→Y }. Reduction is readily reorganized to output
BK by replacing all non redundant premises X by the closure XΣ−{X→Y } available at
the end of the reduction task. Two variations of that algorithm aimed at the canonical
basis can be found in [4].

3 Merge-Based Computation of the Canonical Basis

The relationships between the two factor lattices and the global one have been explored
from a computational viewpoint, for constructing L3 and, more recently, B3.

In [21], a method for extracting L3 from L1,2 was proposed whose motivation could
be summarized as follows. Provided L1 from L2 are available, the direct product L1,2

constitutes a (usually) much smaller search space for global intents (and concepts) than
the entire Boolean lattice 2A3 (as most of the time |L1| ∗ |L2| � 2|A3|). The proposed
approach amounts to a bottom-up traversal of L1,2 which filters the closed intent unions
in Ca

1,2 and upgrades those to full-scale global concepts. By applying the technique to
factors, i.e., in a divide-and-conquer manner, a complete lattice construction method is
devised which has been shown to perform well on specific classes of datasets.

The equivalent for implications would be to combine B1 and B2 into a product-based
search space, which motivated the study in [20]. As a direct merge-based approach for
the simultaneous computation of both Ca

3 and B3 from factor counterparts (Ca
i and Bi,

(i = 1, 2)) hit some hurdles (see Section 4.1), we moved to a less ambitious two-stage
method. In short, the approach exploits the availability of Ca

1,2 (hence the benefit of the
direct product and the reduced search space it represents) to compute an approximation
of B3, i.e., a structurally close cover thereof, which is then reduced to a minimal size
and set in canonical form. The cover is made of both factor bases Bi, (i = 1, 2) plus
some of the non-factor implications from Σ3, called hybrid.

Technically speaking, the premise of a hybrid rule is a non 3-closed union from Ca
1,2

and the conclusion its respective 3-closure3:

I3/1,2 = {Y → Y 33 | Y ∈ Ca
1,2 − Ca

3}.

It is readily shown that I3/1,2 ∪ B1 ∪ B2 is a cover of of Σ3, hence of B3. Intuitively,
one shows that any X → Y ∈ Σ3 is derivable from I3/1,2 ∪ B1 ∪ B2, by establishing
XI3/1,2∪B1∪B2 = X33 This is done in two steps: (i) XB1∪B2 is a member of Ca

1,2, and
(ii) provided the latter is not 3-closed (if it is, we are done), there is a rule in I3/1,2

where it is the premise so the rule “pushes” the final result up to the 3-closure of X .
Yet the goal is not to work with the entire I3/1,2 which can be huge but rather to

reduce it to a smaller cover that would allow for reasonable reduction cost. Hence we
defined a subset thereof, B3/1,2, that mimics (yet it is not equal to) the canonical basis,
hence it name, the hybrid basis. Thus, we defined the family PC3/1,2:

Definition 1. A set Y ∈ Ca
1,2 − Ca

3 is in PC3/1,2 whenever for each Z ∈ PC3/1,2,
Z ⊂ Y implies Z33 ⊂ Y .

3 To avoid confusion, we denote hereafter ′ in Ki by i and speak about i-(pseudo-)closed.
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Now B3/1,2 is made of hybrid rules with premises in PC3/1,2. In our example, it is:

adg → bcefhi abcghi → def acg → h af → d
aghi → c abd → f ae → cd

Definition 1 insures a good trade-off between compact size and easy computation from
the input structures. Indeed, as the example suggests, the two bases B3/1,2 and B3 have
a large intersection.

The computation of B3/1,2 (see Algorithm 1) is a gradual process unfolding along a
traversal of Ca

1,2 that follows a linear extension of the set-inclusion order (e.g., lectic). To
that end, the predicate associated with B �= as presented above is evaluated: A candidate
Y fails the B �=

3/1,2 test if an invalidating rule can be found in the already constructed
part of B3/1,2, i.e., Z → T s.t., Z ⊆ Y and T �⊂ Y .

A dedicated variant of the B �= predicate is used: ground hybrid pseudo-closures are
all minimal non 3-closed elements from Ca

1,2 while the members of PC3/1,2 at higher

set-inclusion levels are exactly those who pass the B �=
3/1,2 test. Once the hybrid basis is

computed, a plain reduction step shrinks B3/1,2 ∪ B 1∪ B 2 toB 3.

1: procedure MERGE-BIS(In: Ca
1 , Ca

2 set families; B1, B2 implication sets; Out: Ca
3 set

family; B3 an implication set)
2:
3: Ca

3 ← ∅
4: Bw ← ∅ {The already discovered part of B3/1,2}
5: SORT(Ca

1 ); SORT(Ca
2 ) {Decreasing order; if needed}

6: for all (Y1, Y2) in Ca
1 × Ca

2 do
7: Y ← Y1 ∪ Y2

8: r ← FINDINVALIDATINGRULE(Bw, Y ) {The B �=
3/1,2 test}

9: if r = NULL then
10: Yc ← CLOSURE(Y ) {‘‘Survived’’, test for closure}
11: if Y = Yc then
12: Ca

3 ← Ca
3 ∪ {Y } {Global closure detected}

13: else
14: rn ← NEWRULE(Y , Yc)
15: Bw ← Bw ∪ {rn} {Global pseudo-closure, a new rule in Bw}
16: B3 ← REDUCE(Bw, B1, B2)

Algorithm 1. Straightforward merge of factor intent families and canonical bases

4 An Optimized Merge of Factor Bases

B3/1,2 happens to possess further properties enabling an improved algorithmic design.

4.1 Do We Need an Intermediate Cover?

As our initial motivation was to design a structure emulating Ca
1,2 for PC3 it is worth

examining the real necessity of using the hybrid basis. In fact, given the available math-
ematical and algorithmic tools there are four hypothesis about the possible search space
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to yield pseudo-closures by a product-like transformation. Spelled differently, global
pseudo-closures may systematically split along the factor attribute sets into factor:

H1: pseudo-closures, i.e., PC3 ⊆ {Y1 ∪ Y2 | Yi ∈ PCi, i = 1, 2}.
H2: closures, i.e., PC3 ⊆ {Y1 ∪ Y2 | Yi ∈ Ca

i , i = 1, 2}.
H3: pseudo-closures or closures, i.e., PC3 ⊆ {Y1 ∪ Y2 | Yi ∈ Ca

i ∪ PCi, i = 1, 2}.
H4: quasi-closures.

Obviously, H1 and H2 are mutually exclusive and also stronger than H3 (i.e., imply
it) whereas H3 implies H4. So far, H1 and H2 have been invalidated by immediate
counter-examples (e.g., in the above context acg, ai ∈ PC3 but ac = acg ∩ A1 is not
in PC1 while i = ai ∩ A2 is not in Ca

2 ). Moreover, H4 trivially holds.

Proposition 1. Given contexts Ki = (O, Ai, Ii) (i = 1, 2, 3) such that K3 = K1|K2,
for any Y ∈ PC3 and Yj = Y ∩ Aj (j = 1, 2) holds Yj ∈ QCj

In summary, the only open question remains whether mixing factor closures and
pseudo-closures would be enough (H3).

From a computational viewpoint, however, Proposition 1 is of little practical use as
quasi-closed sets may outnumber by far pseudo-closed plus closed. Thence there is no
point in computing and maintaining them which further means that pending a proof of
H3 the only reasonable alternative is to use an intermediate cover of B3 such as B3/1,2.

4.2 What B3/1,2 Represents and Reveals about the Factors

B3/1,2 happens to be a true canonical basis, yet a relative one, as defined in [18]. Indeed,
it is uniquely defined, and, as we show below, covers Σ3 together with B1,2 = B1 ∪ B2

while being of minimal size. In a sense, B3/1,2 represents the minimal set of implica-
tions that, whenever applied to Ca

1,2 transform it into Ca
3 .

To fix the terminology, we shall say that A ⊆ ℘(A) respects ([10], § 2.3) an impli-
cation family Θ whenever all members of Θ are valid within A (e.g., Ca

1,2 respects B1,2

but not B1,2 ∪ I3/1,2). In our setting, we say that a set of implications Θ extracts Ca
3

from Ca
1,2 if Ca

3 respects Θ but none of the elements of Ca
1,2 − Ca

3 respects Θ. Such Θ
will be said non-redundant if no proper subset thereof extracts Ca

3 from Ca
1,2.

Theorem 1. B3/1,2 extracts Ca
3 from Ca

1,2 and is non-redundant.

Proof. Clearly Ca
3 respects B3/1,2 (subset of I3/1,2). Now let Y ∈ Ca

1,2 − Ca
3 , so that

Y ⊂ Y 33 holds, and assume Y respects B3/1,2. This means Y satisfies the conditions
for being a 3/1, 2-pseudo-closed, hence there should be an implication Y → Y 33 in
B3/1,2. Yet this contradicts the hypothesis that Y respects B3/1,2. Hence no such Y
exists and, consequently, B3/1,2 extracts Ca

3 from Ca
1,2.

To prove B3/1,2 is minimal, it is enough to show that for any Y → Y 33 ∈ B3/1,2,
Y respects B3/1,2 − {Y → Y 33} (i.e., B3/1,2 − {Y → Y 33} �|= Y → Y 33). Yet Y is
3/1, 2-pseudo-closed, hence for all Z → Z33 ∈ B3/1,2 − {Y → Y 33}, Z ⊂ Y entails
Z33 ⊂ Y . Hence Y respects B3/1,2 − {Y → Y 33}.

Theorem 1 shows that B3/1,2 is a relative canonical basis expressing how Ca
3 is em-

bedded into Ca
1,2. It is directly adapted from the standard theorem for arbitrary closure
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operators (Th. 8 in [10]) and can be rephrased in terms of background knowledge and
implications [18].

In this second setting, we keep the same definition for 3/1, 2-pseudo-closed and let
the role of Ca

1,2 be played by B1,2 (which is the canonical basis of the concept lattice
whose intents coincide with Ca

1,2). Assume now B1,2 is given as background knowledge.
We say that a set of implications Θ is 3/1, 2-complete if Θ ∪ B1,2 |= Σ3. Again, Θ is
non-redundant if no proper subset thereof is 3/1, 2-complete.

Theorem 2. B3/1,2 is 3/1, 2-complete and non redundant.

Proof. The demonstration is analogous to the previous one.

The above twin theorems have their respective interests. The first one formalizes the
Algorithms 1 and 2 both of whom compute B3/1,2 by scanning through Ca

1,2 without
referring to B1 and B2. In this sense, it provides the correctness of both algorithms.

It will be useful for evaluating the gap between Ca
3 and Ca

1,2, hence the gap to direct
product L1 ×L2 and global independence. More precisely, small-size hybrid bases hint
at independent factors (few interactions) with the extreme case being B3/1,2 = ∅. Void
B3/1,2 entails B3 = B1 ∪ B2 and therefore Ca

3 = Ca
1,2. Conversely, large hybrid bases

mean lots of non-closed combinations in Ca
1,2 and therefore few global closures that

combine two non-empty factor ones.
The second theorem focuses on the fact that B3/1,2 ∪B1 ∪B2 is a cover of Σ3, hence

it can be transformed into B3 by standard reduction [15, 4].

4.3 Optimized Computational Strategy for B3/1,2

A key concern in the approach is the quickest elimination of Ca
1,2 elements which are

not recognized by B �=
3/1,2. To address this concern, we examine some small-scale opti-

mizations that help speed-up the detection of invalidating implications for unsuccessful
candidates. Intuitively, we must insure that a potential invalidating, or ”killer”, implica-
tions will lay somewhere close to the head of the implication list Bw (see Algorithm 1).
To that end, some inexpensive rearrangement of the list could be carried out, e.g., adding
new applications always at the head and pushing forward previous successful “killers”.
However, there will still be too many cases in which a significant portion of Bw is tested
before the invalidating implication pops up. Hence further invalidation tools are needed.

A first idea is to structure the search space in a way that eases transfer of successful
invalidating implications downwards in the lattice (inheritance of invalidating implica-
tions). Recall that for the B �=

3/1,2 test to work, the traversal of Ca
1,2 must be done with

respect to a linear extension of the product order. A step further is to require this order
to preserve the highest degree of “continuity”, i.e., the neighbor nodes in the order to
share a large number of attributes.

This would allow the buffering of recent successful “killers” for preferential exam-
ination, i.e., before the rest of the implications. The assumption here is that the closer
the composition of the neighbors of a non recognized set Y , the greater the chances
for those to be invalidated, or “killed”, by the same implication that discarded Y . The
underlying implication list, anecdotically called “smoking gun”, is gradually updated
along the traversal and may have variable length.
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A further tool aims at a partial remedy for the situations of continuity disruption,
i.e., a sharp structural change between two neighbour nodes in the order. In this case,
the chances of having the smoking gun list work are low while those of spending large
efforts on lookup of killing implication within Bw are much higher. A way out could
be to shift immediately to closure computation from the context and avoid potential
bottleneck in searching the B3/1,2 while capitalizing on the cost to pay in the subse-
quent steps. Indeed, the new candidate Y and its 3-closure could form a local smoking
gun although Y → Y 33 may end up discarded once having become irrelevant in the
local search. However, its chances to succeed in killing locally the successors of Y
are high. Therefore, keeping and applying these local implications constitutes another
fine-grained mechanism for rapid elimination of unsuccessful candidates.

The above mechanisms, together with the lookup for a invalidating implication in
Bw and the closure computation from K3 bring the number of algorithmic tools for
canonicity check to four. Therefore, their appropriate composition becomes an issue.

1: procedure MERGE-TERS(In: Ca
1 , Ca

2 intent families; B1, B2 implication sets; Out: Ca
3

an intent family; B3 an implication set)
2:
3: Ca

3 ← ∅
4: B3/1,2 ← ∅
5: Zl ← ∅ ; Tl ← ∅ {The local implication, Zl → Tl, set to a trivial value}
6: rs = (Zs → Ts) ← first(B1) {The smoking gun is any valid implication}
7: for all (Y1, Y2) in Ca

1 × Ca
2 do

8: Y ← Y1 ∪ Y2

9: if Zl �⊆ Y or Zl = Tl then
10: Zl ← Y ; Tl ← CLOSE(K3, Y ) {Reinstall the local implication}
11: if Y ⊆ Tl then
12: if Zs �⊆ Y or Y ⊆ Ts then
13: if Y = Tl then
14: Ca

3 ← Ca
3 ∪ {Y } {Survived all guns, closed}

15: Zl ← Tl {Signal need for changing the local implication}
16: else
17: r ← FINDINVALIDATINGRULE(B3/1,2,Y ) {Survived all guns, non closed}
18: if r = NULL then
19: rn ← NEWRULE(Y ,CLOSE(K3,Y )) {Survived all guns, pseudo-closed}
20: B3/1,2 ← B3/1,2 ∪ {rn} {Add to the basis}
21: else
22: rsg ← r {Reinstall the smoking gun}
23: B3 ← REDUCE(B3/1,2, B1, B2)

Algorithm 2. Enhanced merge of factor lattices and canonical implication bases

4.4 Algorithmic Design

The order between tools reflects their relative cost. For instance, the original tools are
clearly heavy-weight ones, whereas the mechanisms introduced in Section 4.3 are rather
light-weight (single implication or few of these). Therefore, the former must be applied
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more sparingly whereas the latter could work as checkpoints for candidates barring
them the way to more costly examinations. In other terms, the external layers in a nested
control structure should relie on smoking gun and local implications. Only candidates
which ”survive” those checks and thus have higher chances of becoming 3-closed or
3/1, 2-pseudo-closed will be admitted to the inner layers of the control where their
status can be thoroughly examined.

Algorithmic Scheme. The following algorithmic code is a product of a preliminary
performance study that helped establish an order based on the relative contribution of
each tool in the global discarding effort.

Thus, the outer most level performs the local check on every new candidate before
any other processing. The local rule is systematically re-computed whenever irrelevant,
i.e., its premise is no more a subset of the candidate set (lines 9-10). Once this pre-
liminary relevance test fixed, the implication is applied to only let in candidates that
represent subsets of its conclusion (line 11).

Next, the smoking gun is fired (line 12), and the survivors are then let into the heavy-
weight tool area (lines 13-22). Here candidates are further dispatched on their closeness
status. Closed sets are easily detected (line 13), while the local implication is set to a
tautological value to force a change at the following step (line 15).

Non closed survivors to all other tools come to the basic invalidation mechanism as
described in Algorithm 2 (lines 17-22). The only difference is that rules having dis-
carded a candidate are kept as the next ”smoking gun” implication (line 22).

The processing ends by the reduction of B3/1,2 ∪ B1 ∪ B2.

Correctness of the algorithm. The overall correctness of Algorithm 2 follows from the
Theorem 1. Below, some clarifications about the additional mechanisms are provided.

Concerning local implication, only candidates that are subsets of its conclusion (a
3-closed set) are effectively processed. In fact, the “killed” candidates could be either
incomparable with the conclusion or supersets thereof. While the first cannot be closed

for B �=
3/1,2 , the second case actually never occurs.

Proposition 2. Let the candidate set be Y and the local premise at the time Y is exam-
ined Zl. Then Z33

l �⊂ Y .

Moreover, the way for 3-closed candidates to quit the for loop is through a test for
equality with the local implication conclusion. In fact, as every candidate comprises the
local premise, its closure necessarily equals the local conclusion.

5 Parsimonious Reduction Strategy

The reduction process can be expensive as computing Y B3/1,2∪B1∪B2−(Y →Z) may take
a time linear in the total number of attributes in the initial rule set. Thus, the complete
reduction could cost as much as a square function of the number of implicatons. Yet for
large parts of B3/1,2 ∪ B1 ∪ B2 a much smaller reduction effort will suffice.
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5.1 Composition of the Intermediate Cover

First, some Y → Z from B1 ∪ B2 will be in canonical form (Y in PC3, Z in Ca
3 ).

Proposition 3. For all Y → Y ii from Bi (i = 1, 2), if Y ii = Y 33 then Y ∈ PC3.

Indeed, part of the factor closures remain closed in K3 – these form an upper-set in the
respective factor intent semi-lattice, as well as in the global one. Thus, there is no inter-
ference with the implications from the opposite factor in the corresponding sub-order
of the Boolean lattice. Consequently, nothing challenges the status of global pseudo-
closures for the premises of the rules corresponding to each factor closure upper-set. In
the canonical basis of the example, the only stable factor implication is → a.

Next, any Y → Z from (B1 ∪ B2) − B3 is valid in K3 yet incomplete in a sense
since neither of the conditions Y ∈ PC3 and Z = Y 33 need to hold. However, only a
part of these implications will be inherently redundant, i.e., capture no 3-pseudo-closed
between Y and Y 33. For example, the 2-pseudo-closed fg is no more a pseudo-closed
in K3. More dramatically, fg is not even a part of a 3-pseudo-closed set.

Recall that even if a 3-pseudo-closed lays in that interval, Y → Z may still be
eliminated since coming before the last implication generating that pseudo-closed.

Regarding Y → Z in B3/1,2, there is no point in trying to expand Y using other
rules from B3/1,2 because of its pseudo-closure status. Neither is it reasonable to try
with factor rules given that Y ∈ Ca

1,2, whence Y = Y B1∪B2 . Hence any effective
expansion can only come from factor rules that have had their parts completed, in par-
ticular, conclusions. Therefore completed version of each factor basis, B33

i (i = 1, 2),
is considered where each original rule X → T is replaced by X → X33. This reason-
ing only holds for the first expansion of Y , which opens the space for all the remaining
rules in the cover. Luckily enough, there is no need to follow with a full-scale expansion
since whenever a relative premise “violates” an implication from B33

i , the underlying
hybride rule can be discarded as redundant.

Proposition 4. For a given Y → Y 33 from B3/1,2, if there exists Z → Z33 in B33
i with

Z ⊆ Y and Z33 �⊆ Y , then Z33 = Y 33.

Further to Proposition 4, as there is a less constrained implication Z → Z33 which

nevertheless will produce Y
B �=

3/1,2 (whether pseudo-closed or closed) in the global set,
Y → Y 33 can be discarded. Moreover, in scanning B3/1,2, one needs to test only factor
implications from B33

i − Bi (i = 1, 2) since the remaining ones are expansion-neutral.
To sum up, among the rules in B3/1,2 ∪ B1 ∪ B2, only those from B1 ∪ B2 require

full-scale redundancy tests and these tests involve the rest of the global rule set. Before
doing that, the conclusions must be set to their effective 3-closures. Redundant B3/1,2

rules are much easier to detect: a sufficient condition is the existance of at least one
invalidating rule from B33

i (i = 1, 2).

5.2 Reduction Procedure

The reduction process is an application of the results presented in Section 5.1. It is
described in Algorithm 3. As a first step, the conclusions of the rules in Bi (i = 1, 2) are
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set to the respective 3-closures (lines 4-8). For each rule in B3/1,2 possible invalidations
by rules that have their conclusions changed (in the Bw list) are examined (lines 9-11).
Finally, the premises of modified rules in B33

i are expanded in order to establish the
potential redundancy of each rule (lines 12-16).

1: procedure REDUCE(In: B3/1,2, B1, B2 implication sets; Out: B3 an implication set)
2:
3: Bw ← ∅ ; B3 ← ∅
4: for all Y → Z in B1 ∪ B2 do
5: if Z �= Y 33 then
6: Bw ← Bw ∪ {Y → Y 33}
7: else
8: B3 ← B3 ∪ {Y → Z}
9: for all Y → Z in B3/1,2 do

10: if FIND-INVALIDATING-RULE(Bw, Y ) = NULL then
11: B3 ← B3 ∪ {Y → Z}
12: for all Y → Z in Bw do
13: Bw ← Bw − {Y → Z}
14: Y c ← LINCLOSURE(Bw ∪ B3, Y )
15: if Z �⊆ Y c then
16: B3 ← B3 ∪ {Y c → Z}

Algorithm 3. Reduction of the global implication set B3/1,2 ∪ B1 ∪ B2

6 Implementation and Experimental Results

We have implemented a number of variants of the basic algorithmic scheme described
above. Each of them features a specific combination of speed-up heuristics. These have
been compared to the standard NEXTCLOSURE algorithm. The latter has been chosen
for its highly valuable properties of reduced additional space requirements and rela-
tively high efficiency. Moreover, both schemes benefit from the same implicit tree struc-
tures that “organize” the memory of past computations in a way that helps carry out the
current test more rapidly. The comparison has been made on several synthetic datasets.
An average case of the still on-going study is described as follows. The dataset is made
out of 267 objects described by 23 attributes. The contexts generates 21550 concepts,
with 2169 pseudo-closed and 2069 3/1, 2-pseudo-closed.

The current implementations of the various merge methods use the environment pro-
vided by the GLAD system. Thus, the implementation language is FORTRAN. The
tests have been run on a Windows platform, with a Pentium I, 166 MHz. Moreover, in
all merge algorithms the factor lattices and implication bases are ”prepared” by recur-
sively executing NEXTCLOSURE on each factor.

Among the versions of highest level of optimization, the one that produces only con-
cepts takes 0.82s while the most rapid method for both concepts and implications, with
the computation of the basis B3, takes 2.97s. These figures are to be compared to 1.59s
and 41.41s, respectively, for standard NEXTCLOSURE. The following table presents the
performance scores of a selected set of algorithms that were designed within the study
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Table 1. Performances of algorithms based on the merge framework: on closure computation
(left) and on joint closure and implication computation (rigth)

Algotihm name Description CPU-time
C3

NEXTCLOSURE Standard ver-
sion

1.59s

AINTPROL Intent compu-
tation

0.82s

Algotihm name Description CPU-time
C3 + B3

NEXTCLOSURE B3-based variant 41.41s
AINTPROL B3, all tools 2.97s
AINTPROP Only B3/1,2 (no re-

duction), all tools
2.05s

AINTPROK Only B3/1,2, no
light-weight tools

10.22s

reported here. Notice that the figures for all merge algorithms include the time taken by
the subordinated NEXTCLOSURE calls.

We tend to read both performance results as an indication that reducing the candi-
dates by using the subdirect product and local implications can be efficient. The fact
that the efficiency gains with respect to NEXTCLOSURE are much larger for implica-
tions than for intents is hardly surprising, since the closure for implications is far more
painful due to reiteration. Indeed, while NEXTCLOSURE scans only the vicinity of ev-
ery intent in L3, our algorithm has to explore every node of the direct product L1,2, a
structure whose size may easily grow up to a square function of the size of L3. However,
AINTPROP spends only a tiny laps of time on most non-valid nodes, except on those
forcing a change in the current local implication. In contrast, NEXTCLOSURE needs to
compute closures in the context — or through the growing list of implications — for
a number of candidates that is usually substantially bigger. Of course, both algorithms
use local regularities in the listing orders for candidates to avoid redundant computa-
tion by skipping invalide nodes with minimal or no examination at all. In doing this,
NEXTCLOSURE goes a step further and prunes candidates that have not even been ex-
plicitly listed. Nevertheless, in the light of the current test results, the introduction of
the direct product and the underlying constraint to consider explicitly every candidate,
seem still to pay back, essentially through the reduction of the effort to spend on each
non-valid candidate.

7 Conclusion

The motivation of the current study was to push factor lattice merge to its efficiency
limits. To that end we reshuffled the initial problem settings to limit the computation to
strictly necessary elements and brought in the implications in order to take advantage
of the decrease in the attribute dimension along subsequent splits. The latter innovation
entails significant overhead in the algorithmic design as the initial merge scheme was
de facto abandoned. The bid behind the new methods seems to be right, at least in the
light shed by the initial performance studies. Indeed, in its current implementation, the
optimized merge method clearly outperforms the standard version of NEXTCLOSURE.
More extensive performance tests will be necessary in order to clarify this sensitive
topic. Nevertheless, the available results are already very encouraging since the basic
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merge framework works equally well with iceberg lattices as with complete ones and
therefore should easily adapt to data mining tasks.

Rather than the presenting the results of an accomplished study, the present paper
reports on an intermediate step of a larger research project. In fact, we are currently
looking not only at the practical performance aspects of the lattice merge problem,
but also at a wide range of questions that are still to be answered. Recall that merge
of factor results is a mere step in the global process that performs merges at every
non-leaf node of the recursion tree. Effective divide-and-conquer methods based on
the research reported here are yet to be designed, especially since these require more
flexible decision criteria for halting the recursive splits and going into a batch mode. An
orthogonal question that remains open is whether or not there is an inexpensive way of
dividing the context into parts of unbound, i.e., not necessarily balanced, sizes so that
the effort of merging the resulting factors is minimized. Pushing further on that idea,
one may want to research other ways of dividing a context, possibly into sub-contexts of
non-disjoint attribute and/or object dimensions, which allow for less expensive merge.
Finally, key argument in favor of divide-and-conquer methods is the possibility to easily
adapt them to parallel environments (see [7]).
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yse, pp. 213–239, B.I.-Wiss. Verl., Mannheim (1987)

[9] Ganter, B.: Two basic algorithms in concept analysis. preprint 831, Technische Hochschule,
Darmstadt (1984)

[10] Ganter, B., Wille, R.: Formal Concept Analysis, Mathematical Foundations. Springer, Hei-
delberg (1999)

[11] Guigues, J.L., Duquenne, V.: Familles minimales d’implications informatives résultant d’un
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Abstract. We show how certain lattices occurring in the theory of
Rough Sets can be described in the language of Formal Concept Analy-
sis. These lattices are obtained from generalised approximation operators
forming a kernel-closure pair. We prove a general context representation
theorem and derive first consequences. It becomes clear under which con-
ditions the approximations can be interpreted as intervals in a lattice of
“definable sets”.

1 Introduction

The theory of Rough Sets [1] offers, among other things, an interval arithmetic
for sets. The original setting, introduced by Z. Pawlak [4], assumed that sets
are chosen from a universe U , but that elements of U can be specified only up
to an indiscernibility equivalence relation ∼ on U . If a subset A ⊆ U contains
an element indiscernible from some element not in A, then A is rough. In other
words, a subset of U is not rough iff it is a union of equivalence classes of ∼. Up
to indiscernibility, a rough set A is described by two approximations:

– the upper approximation R(A) := {u ∈ U | ∃y∼u y ∈ A}, and
– the lower approximation R(A) := {u ∈ U | ∀y∼u y ∈ A}.

Clearly R(A) ⊆ A ⊆ R(A). The pair (R(A), R(A)) sometimes is considered a
rough set abstraction, no matter if A is rough or not. These abstractions,
being pairs of sets, are naturally ordered by applying the ⊆–order component-
wise. They thereby form a complete lattice, which is a Stone algebra, a mild
generalisation of a Boolean algebra.

Many authors, including Pawlak himself [5], saw a need for generalised ap-
proximation operators, not necessarily built from an equivalence relation. For
such a generalised setting it is not automatically the case that the abstractions
form a lattice. And even if they do, its lattice structure requires investigation.

We attack these tasks here, studying generalisations for which the lower ap-
proximation operator R(·) is an interior operator and the upper approximation
operator R(·) is a closure operator. For either operator type, the set of images
forms a complete lattice, since they constitute a kernel system and a closure
system, respectively.

R. Medina and S. Obiedkov (Eds.): ICFCA 2008, LNAI 4933, pp. 199–216, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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The abstractions, i.e., the pairs (R(A), R(A)), generate (but do not necessarily
form) a sublattice of the direct product of the two lattices, of interior sets and
of closures.

Proposition 1. Let U be a set, let X �→ R(X) be an interior operator and
X �→ R(X) be a closure operator on U . Then the pairs

(R(X), R(Y )), X, Y ⊆ U,

form a complete lattice with the operations
∨

t∈T

(Xt, Yt) := (
⋃

t∈T

Xt, R(
⋃

t∈T

Yt))

∧

t∈T

(Xt, Yt) := (R(
⋂

t∈T

Xt),
⋂

t∈T

Yt).

This is obvious. The complete sublattice generated by the pairs (R(X), R(X))
is called the lattice of rough set abstractions. The reader must be warned
that this notion may be misleading:

The pairs (R(X), R(X)), X ⊆ U can naturally be ordered by component-wise
set inclusion. It can easily happen that this ordered set is a lattice (for example,
when the mapping X �→ (R(X), R(X)) is an order embedding), but is not a
sublattice of the direct product. That lattice structure is not what we study
here. We use the name “lattice of rough set abstractions” for the sublattice of
the direct product that is generated by these pairs. In most cases, this lattice
contains pairs that are not of the form (R(X), R(X)) for some X ⊆ U . It is the
aim of the present article to describe this lattice in terms of a formal context
construction.

Closure- and kernel systems can conveniently be described in the language
of Formal Concept Analysis [3]. In fact, we can find representing contexts
(U, M, I) and (U, N, J) such that the closures R(A) are precisely the extents
of (U, N, J) and the interior sets R(A) are precisely the extent-complements of
(U, M, I). The lattice of closed sets then is isomorphic to B(U, N, J), while the
lattice of interior sets is isomorphic to B(M, U, Id), and the lattice of rough set
abstractions is isomorphic to a complete sublattice of the direct product

B(M, U, Id) × B(U, N, J).

As we shall see, this sublattice can be characterised as a P -product of the factor
lattices.

2 P -Products

One of the standard constructions in Formal Concept Analysis is that of the
context sum, corresponding to the direct product of the two concept lattices. Let
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(G, M, I) and (H, N, J) be formal contexts with G ∩H = ∅ = M ∩ N . The sum
of (G, M, I) and (H, N, J) is the formal context

(G ∪ H, M ∪ N, I ∪ J ∪ (G × N) ∪ (H × M)),

see Figure 1.

G I

M

H J

N

Fig. 1. The context sum

Proposition 2 (see [3]). The concept lattice of the sum is isomorphic to the
direct product of the respective concept lattices. (A, B) is a formal concept of
the sum if and only if (A ∩ G, B ∩ M) is a formal concept of (G, M, I) and
(A ∩ H, B ∩ N) is one of (H, N, J).

Remark 1. The definition of the context sum can easily be modified so that
the disjointness assumptions can be abandoned, and Proposition 2 still holds.
To achieve this, (G, M, I) and (H, N, J) are simply replaced by disjoint isomor-
phic copies. In the sequel, our notation will ignore this technical difficulty. We
shall use the construction as if the contexts were disjoint, even if they are equal.
Figure 3 e.g. has to be interpreted in this sense.

Let P be some fixed set. A P -lattice (L, α) consists of a complete lattice L
together with a mapping α : P → L, the image of which generates L. If (L1, α1)
and (L2, α2) are P -lattices, then their P -product is the complete sublattice of
L1 × L2 that is generated by the pairs

{(α1(p), α2(p)) | p ∈ P}.

A P -product automatically is a subdirect product, because each component
contains a generating set of the respective factor.

P -products of concept lattices correspond to P -fusions of their contexts. We
briefly sketch the construction here; details can be found in [3]. P -fusions are
built from bonds. Therefore we introduce these first.

Let (G, M, I) and (H, N, J) be formal contexts. A bond from (G, M, I) to
(H, N, J) is a relation R ⊆ G × N with the property that

– gR is an intent of (H, N, J) for every g ∈ G, and
– nR is an extent of (G, M, I) for every n ∈ N .

G I

M

H J

N

R
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The set of all bonds from (G, M, I) to (H, N, J) is closed under intersection,
because the set of all intents and the set of all extents are. Thus for every subset
S ⊆ G × N there is a smallest bond containing S.

Now let P be some set, let (G, M, I) and (H, N, J) be formal contexts and let
α1 : P → B(G, M, I) and α2 : P → B(H, N, J) be mappings onto generating
sets of B(G, M, I) and B(H, N, J), respectively. Let

α1(p) =: (Ap
1, B

p
1), α2(p) =: (Ap

2, B
p
2)

be the concepts to which p ∈ P is mapped under α1 and α2, respectively.
The P -fusion of the two P -contexts ((G, M, I), α1) and ((H, N, J), α2) is

defined as the formal context

G I

M

H J

N

Rβ
1,2

Rβ
2,1

,

where for {i, j} = {1, 2} the relation Rβ
i,j is the smallest bond containing

Ri,j :=
⋃

p∈P

Ap
i × Bp

j .

Theorem 1 (see [3]). Let ((G, M, I), α1) and ((H, N, J), α2) be P -contexts.
The concept lattice of their P -fusion is isomorphic to the P -product of their
concept lattices.

The formal concepts of the P -fusion are precisely the pairs (A1 ∪A2, B1 ∪B2),
where (A1, B1) and (A2, B2) are formal concepts of (G, M, I) and of (H, N, J),
respectively, such that the pair ((A1, B1), (A2, B2)) is an element of the
P -product.

3 The Lattice of Abstractions

The notion of a P -product can naturally be applied to the rough set approxi-
mations described in the first section. For the set P we will use the power set
of the universe U . The mappings X �→ R(X) and X �→ R(X) are, of course,
onto their images and thus clearly make the lattice of lower and the lattice of
upper approximations P -lattices. Since the lattice of rough set abstractions is
generated by the pairs (R(X), R(X)), it is their P -product and isomorphic to
the concept lattice of the P -fusion
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M Id

U

U J

N

Rβ
1,2

Rβ
2,1

.

However, in the setting considered here, the relations Rβ
1,2 and Rβ

2,1 can be
determined explicitly. This is stated in the following theorem:

Theorem 2. Let (U, M, I) and (U, N, J) be formal contexts with U ∩(M ∪N) =
∅ and let for every X ⊆ U

R(X) := smallest extent of (U, N, J) containing X, and
R(X) := largest extent-complement of (U, M, I) contained in X.

Then the lattice of rough set abstractions is isomorphic to the concept lattice of
the formal context shown in Figure 2 and explained in Propositions 3, 4, and 5.

M Id

U

U J

N

⊥

∗

Fig. 2. The P -fusion corresponding to the lattice of rough set abstractions.
The relation in the upper right quadrant is defined by m ⊥ n : ⇐⇒
mI ∪ nJ = U , the relation in the lower left quadrant is U × U \ {(g, g) |
g is an extremal point of (U,M, I) and of (U, N, J)}.

Proof. Three propositions will be given which together prove Theorem 2.
In order to compute Rβ

i,j , recall that for any given set X ⊆ U the lower
approximation R(X) is a complement of an intent of (M, U, Id). More precisely,
it is the largest intent-complement of (M, U, Id) that is contained in X , and
therefore the complement of the smallest intent containing XC , the complement
of X . The upper approximation of X is the smallest extent of (U, N, J) containing
X , thus equal to XJJ . So we get that

R(X) = ((XC)II)C , R(X) = XJJ .

The corresponding formal concepts are

((XC)I , (XC)II) =: (AX
1 , BX

1 ) and (XJJ , XJ) =: (AX
2 , BX

2 ).
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So we obtain

R1,2 =
⋃

p∈P

Ap
1 × Bp

2 =
⋃

X⊆U

(XC)I × XJ ⊆ M × N

and
R2,1 =

⋃

p∈P

Ap
2 × Bp

1 =
⋃

X⊆U

XJJ × (XC)II ⊆ U × U.

When is (m, n) ∈ R1,2? This is the case iff there is some X ⊆ U satisfying
m ∈ (XC)I and n ∈ XJ , which is equivalent to

XC ⊆ mI and X ⊆ nJ .

Obviously, this is the case if and only if mI ∪ nJ = U . Abbreviating this by ⊥
we get

Proposition 3
R1,2 =⊥:= {(m, n) | mI ∪ nJ = U}.

Similarly we can determine R2,1. We have that (g, h) ∈ R2,1 iff there is some
X ⊆ U with g ∈ XJJ and h ∈ (XC)II . Choosing X := {g} we get that XC =
U \ {g}. Then (XC)II is either U or U \ {g}. As a result, we find that (g, h) is
always in R2,1, with the only possible exception of h = g. And (g, g) /∈ R2,1 can
only be true if g is an extremal point of (U, M, I), i.e., if U \ {g} is an extent.
But this is not sufficient: Consider the other extreme case, that X := U \ {g}.
Then

XJJ × (XC)II = (U \ {g})JJ × {g}II,

which contains (g, g) except if g /∈ (U \ {g})JJ i.e., if g is an extremal point
of (U, N, J). The two conditions together are in fact sufficient, so that we can
conclude:

Proposition 4

R2,1 = U × U \ {(g, g) | g is an extremal point of (U, M, I) and of (U, N, J)}.

So R2,1 essentially is the total relation U × U , consisting of all possible pairs.
Only in exceptional cases, there may some “diagonal” pairs (g, g) be missing. We
denote this relation by the symbol

∗
.

Note that the missing pairs (g, g) are exactly those for which there are m ∈ M
and n ∈ N such that

mI = U \ {g} = nJ .

Such g satisfy the condition

g ∈ R(X) ⇒ g ∈ R(X).

For simplicity, we shall call such elements isolated points of the universe.
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Proposition 5. R1,2 and R2,1 are bonds.

Proof. It is easy to see that R2,1 is a bond, since each row and each column of
R2,1 represents a subset of U which is either equal to U or to U \ {g}, where the
latter only happens if g is an isolated point. Clearly these sets are all closed.

To see that R1,2 is a bond, consider some m ∈ M . Then

{n ∈ N | (m, n) ∈ R1,2} = {n ∈ N | m ⊥ n} = ((mI)C)J

is an intent of (U, N, J), and dually. �

The three propositions show that the parts of the P -fusion are as claimed in
Theorem 2. �

4 The Case of an Equivalence Relation

In Pawlak’s original definition, as described in the introduction, the approxima-
tion operators are defined with reference to some equivalence relation ∼ on U .
We first verify that Theorem 2 gives the (well known) characterisation of the
approximation lattices in this basic case.

The formal contexts for the lower and the upper approximation are easily seen
to be the same, both identical to

(U, U, �∼),

where �∼ is the complement of the equivalence relation ∼. Such contexts are well
understood, their extents (and intents) are precisely those subsets of U which
are unions of equivalence classes of ∼ (the “definable sets”), and their concept
lattices are isomorphic to the power set lattices of the partitions U/ ∼.

Since gI = {h ∈ U | g �∼ h}, we find that g ⊥ h ⇐⇒ g �∼ h. The
(doubly) extremal points are also easy to determine: They are those elements
g ∈ U for which {g} is a one-element equivalence class, because exactly then the
complement is a union of equivalence classes. From Theorem 2 we infer

Corollary 1. If ∼ is some equivalence relation on U , and if the approximation
operators are defined for all X ⊆ U by

R(X) := {u ∈ U | ∃y∼u y ∈ X}
R(X) := {u ∈ U | ∀y∼u y ∈ X},

then the lattice of rough set approximations is isomorphic to the concept lattice
of the formal context in Figure 3, where

∗ = U × U \ {(u, u) | {u} is an equivalence class of ∼}.

The formal context in Figure 3 has structural properties which are worth
mentioning:
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U �∼

U

U �∼

U

�∼

∗

Fig. 3. The P -fusion of the “classical” approximations. See Remark 1 for the notation.

Corollary 2. The P -fusion in the case of an equivalence indiscernibility is sym-
metric. The lattice of rough set approximations therefore has a natural anti-
automorphism (A, B) �→ (B, A) corresponding to rough set complementation.

A second property can be derived using results proved in [2].

Corollary 3. If there are no one-element equivalence classes, then the P -fusion
is of the form shown in Figure 5. The concept lattice of such a context is isomor-
phic to the order relation of B(G, M, I), considered as a complete sublattice of
the square of B(G, M, I). The lattice of rough set approximations then is just
the lattice of all intervals of B(G, M, I), ordered by their lower and their upper
bounds simultaneously.

Indeed, when indiscernibility is an equivalence ∼, then the rough set approxi-
mations correspond to the intervals of the power set lattice of U/ ∼. From every

U

∗
U

U �∼

U

�∼

�∼

Fig. 4. The same context as in Figure 3, but with upper and lower part interchanged
to demonstrate symmetry

G I

M

G I

M

I

Fig. 5. The concept lattice of this formal context is isomorphic to the order relation
of B(G, M, I), considered as a complete sublattice of the square of B(G, M, I)
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rough set X ⊆ U , we obtain the interval having R(X)/ ∼ as its smallest and
R(X)/ ∼ as its largest element. Conversely, given sets S ⊆ T ⊆ U/ ∼, the way
construct a set X with R(X) = S and R(X) = T is to include in X all elements
from sets in S and one element (but not all) from each set in T \ S. This leads
to the desired result except when T \ S contains singleton equivalence classes.

When studying generalisations, we shall investigate if these properties can be
preserved.

The special form of this fusion can also be used to unravel the lattice struc-
ture: When indiscernibility is an equivalence, then the lattice of all rough set
approximations is a direct product of chains with three or two elements. The
two element chains correspond to the exceptional singleton equivalence classes.

5 Granules

A popular interpretation is to understand the indiscernibility classes as “infor-
mation granules”. A possible generalisation of Pawlak’s original approach allows
that granules are not necessarily disjoint.

So let us start with an arbitrary family F of subsets of the universe U , the
elements of which we call granules. As the lower approximation of each subset
X ⊆ U we take the union of the granules contained in X . This will make R(X)
an interior operator. The upper approximation will consist of all elements that
are not contained in a granule disjoint from X . In this way R(X) will become a
closure operator. Formally,

R(X) := U \
⋃

{F ∈ F | F ∩ X = ∅},

R(X) :=
⋃

{F ∈ F | F ⊆ X}.

The context representing the two approximation operators can easily be de-
termined.

Theorem 3. If lower and upper approximations are based on a family F of
granules, as defined above, then the lattice of rough set approximations is iso-
morphic to the concept lattice of the formal context displayed in Figure 6.

Proof. We first determine the representing formal contexts for the approxima-
tion operators. The lower approximations are exactly the unions of granules. Their
complements therefore are exactly the intersections of granule-complements. A
formal context having these as extents is (U, F , /∈). So we may take this as the
representing context for the lower approximation. Upper approximations are pre-
cisely the complements of lower approximations. So again, they are exactly the
extents of (U, F , /∈). The two representing contexts are equal.

Given a granule f ∈ F , then f ′ = {u ∈ U | f

/∈

u} is just the complement of
f in U . So two granules f, g are in relation ⊥ iff the union of their complements
covers U , that is, iff they are disjoint. A point u ∈ U is extremal iff its complement
is an extent of (U, F , /∈), which means that {u} must be a union of granules. So
{u} must be a granule. �
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F /∈

U

U /∈

F

⊥

∗

Fig. 6. The P -fusion when the approximation operators are based on a family F of
granules. Two granules are in relation ⊥ iff they are disjoint. Extremal points correspond
to singleton granules.

The representing context (U, F /∈) for a set F of granules is by no means special.
In fact, whenever (U, M, I) is some attribute-reduced formal context with object
set U , then letting

F := {U \ m′ | m ∈ M}
yields a formal context (U, F , /∈) which is isomorphic to (G, M, I). Therefore the
case of granules is, up to the trivial possibility of “repeated attributes” (with
identical attribute extents) the same as the general case of two identical rep-
resenting contexts. We have indicated that situation in Figure 7, where, as in
Figure 4, we have interchanged the lower and the upper half to exhibit symmetry.

U

∗
U

M ⊥

M

I

Id

Fig. 7. Whenever the two representing contexts are equal, the P -fusion becomes sym-
metric

Proposition 6. When the representing contexts for the lower and the upper
approximation are the same, then the lattice of rough set approximations has an
involutory anti-automorphism. If there are no isolated points and U I = ∅, then
I =⊥= Id implies that I = �∼ for some equivalence relation ∼ in U .

Proof. The first claim can immediately be read off from Figure 7: The P -
fusion is symmetric and thus (A, B) �→ (B, A) is an involutory concept lattice
anti-automorphism. If I = Id, then I is symmetric. The condition that I =⊥
requires that two elements are in relation I iff their neighbourhoods cover U .
This is equivalent to I being the complement of an equivalence relation. �
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6 Inner Granules, Outer Granules

A further generalisation step is to allow different families of granules for the
two approximation operators. Let E and F be families of subsets of U (“inner
granules” and “outer granules”) and let

R(X) := U \
⋃

{F ∈ F | F ∩ X = ∅}
R(X) :=

⋃
{E ∈ E | E ⊆ X}.

It is immediate from the results above how to construct the P -fusion for the
lattice of rough set approximations, the result is depicted in Figure 8. Note that

E /∈

U

U /∈

F

⊥

∗

Fig. 8. The P -fusion for two granule families

this is essentially the most general case, because up to “repeated attributes” every
formal context with object set U can be written as (U, E , /∈) or as (U, F , /∈). So
except for a technical detail, the contexts shown in Figures 2 and 8 are the same.

It may be asked under which conditions the properties of Pawlak’s original
construction that were mentioned in Corollaries 2 and 3 hold for this gener-
alised construction. While the quest for symmetry, at least in its straightforward
form, leads back to Section 5, the property described in Corollary 3 seems more
promising. Indeed, we obtain a classification by means of idempotent relations,
i.e., relations C on U satisfying

C ◦ C = C.

Let us call g ∈ U an isolated point for an idempotent relation C if (g, g) ∈ C,
but (v, g) /∈ C and (g, v) /∈ C for all v �= g.

Proposition 7. The P -fusion for the lattice of rough set approximations, as
shown in Figure 2, is of the form shown in Figure 5 iff the representing contexts
are dual to each other and isomorphic to (U, U, Jd) and (U, U, J), respectively,
where J is the complement of an idempotent relation without isolated points.

Proof. The proposition characterises when Id =⊥= J in Figure 2. This clearly
requires M = U = N and I = Jd, and under these conditions is equivalent to
J =⊥. Expanding the definition of ⊥, the latter becomes

u J v ⇐⇒ u ⊥ v ⇐⇒ uI ∪ vJ = U.
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We get a chain of equivalent conditions:

u J v ⇐⇒ uI ∪ vJ = U

u J v ⇐⇒ uJd ∪ vJ = U

u J v ⇐⇒ ∀x∈U u J x or x J v.

Let C be the complementary relation to J . Then this chain continues to

u C v ⇐⇒ ∃x∈U u C x and x C v

C = C ◦ C.

It remains to check for extremal points. g ∈ U is extremal for (U, U, J) iff there is
some element u1 ∈ U such that u J u1 ⇐⇒ u �= g, and extremal for (U, U, Jd)
iff dually there is some element u2 ∈ U such that u2 J u ⇐⇒ u �= g. For the
complement C of J this amounts to

u C u1 ⇐⇒ u = g ⇐⇒ u2 C u.

Thus g C u1. And since C is idempotent, there must be some u ∈ U with g C u
and u C u1. But u C u1 implies u = g and thus g C g. Now assume v C g. Since
idempotent relations are transitive, we conclude that v C u1. Again, this implies
v = g. Dually g C v implies v = g. Thus g must be an isolated point, and this is
also sufficient. �

Idempotent relations play a rôle in Domain Theory, where they have been studied
under the name infosys (Vickers [6]). The use of infosys in general for rough sets
remains to be investigated. The special case of a quasi-order, i.e., a reflexive
and transitive relation, has a natural interpretation in terms of inner and outer
granules, as Theorem 4 will show.

Corollary 4. Let ≤ be an idempotent relation on U (not necessarily a quasi-
order) without isolated points, let (U, U, �≤) and (U, U, �≥) be the representing
contexts for the approximation operators R(·) and R(·). Then the lattice of
rough set abstractions is equal to the order relation of the lattice of extents of
(U, U, �≥).

A quasi-order ≤ on the universe U may be interpreted as a specialisation order,
so that v ≤ u may be read as “v is a specialisation of u”. This may also be un-
derstood as a non-symmetric indiscernibility, where an element u is indiscernible
from all its specialisations, but not necessarily vice versa. For a universe U with
such an indiscernibility quasi-order, there is a natural definition of the approx-
imation operators: The upper approximation of a set X must contain X and
all specialisations of elements of X , whereas an element u belongs to the lower
approximation of X if u and all specialisations of u are in X . Let us denote for
e ∈ U by

↓ e := {u ∈ U | e ≥ u}
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the quasi-order ideal generated by e, formed by the set of all specialisations of
e. Dually define for f ∈ U

↑ f := {u ∈ U | u ≥ f}
the quasi-order filter generated by f , consisting of all elements which f is a
specialisation of. Let

E := {↓ e | e ∈ U}, F := {↑ f | f ∈ U}.

Using E and F as families of inner and outer granules in Figure 8, and observing
that

– ↓ e

/∈

u ⇐⇒ e �≥ u,
– u /∈ ↑ f ⇐⇒ u �≥ f ,
– e ⊥ f ⇐⇒ (U\ ↓ e) ∪ (U\ ↑ f) = U ⇐⇒ e �≥ f ,

we get that the fusion context in Figure 8 becomes as shown in Figure 9.

U �≥

U

U �≥

U

�≥

∗

Fig. 9. The P -fusion for an indiscernibility quasi-order

Theorem 4. Let ≤ be a quasi-order on the universe U , having no isolated
points. For X ⊆ U define

– R(X) := {u ∈ U | ∃x≥u x ∈ X}
– R(X) := {u ∈ U | ∀x≤u x ∈ X}.

Then the lattice of rough set approximations equals the order relation of the
lattice of order ideals of the quasi-ordered set (U, ≤).

This is indeed a natural and meaningful generalisation of the “classical” case
when indiscernibility is an equivalence relation, and it shares many properties
with that case. The sets of images of the two operators are equal, because for
given X ⊆ U

– the upper approximation R(X) is the smallest order ideal containing X , and
– the lower approximation R(X) is the largest order ideal contained in X .

Therefore both lattices are equal to the distributive lattice of all order ideals of
(U, ≤). The rough set approximations form a sublattice of its square, and this
lattice is distributive as well.
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7 A Toy Example

For data of realistic size the lattice of rough set approximations will be too
large to be displayed in a single readable diagram. This lattice mainly serves as
a background structure for computations. The small example which we discuss
now is not meant to be realistic, but to make our findings of the previous sections
more transparent. We use a four-element universe

U := {father, mother, parent, woman},

abbreviated U = {f, m, p, w}, which is endowed with the order relation given
in Figure 10. We obtain an operator pair (R(·), R(·)) by using the order ideals
as inner granules and the order filters as outer granules, as it is described in
Section 6.

father mother

parent woman �≥

fa
th

er
m

ot
he

r
pa

re
nt

w
om

an

father × × ×
mother × × ×
parent ×
woman × ×

father mother

parent

woman

Fig. 10. An ordered set, the contraordinal scale, and its concept lattice (with object
labels only)

The inner granules are the order ideals and therefore are the extents of the
corresponding contraordinal scale, also displayed in Figure 10 together with its
concept lattice. Since the union of order ideals is again an order ideal, this set
is already the set of all possible lower approximations.

The upper approximations are intersections of complements of the order fil-
ters. However, complements of order filters are order ideals, and the set of order
ideals is closed under intersections. Therefore the set of all upper approxima-
tions is the same as that of all lower ones. Note that in both cases the lattice
operations are simply set-theoretic union and intersection.

Sixteen pairs (R(X), R(X)) can be built from the sixteen choices of

X ⊆ {f, m, p, w},

and they turn out to be all different. These pairs are pairs of extents of the con-
traordinal scale, i.e., both R(X) and R(X) are extents of the lattice in Figure 10.
Therefore these pairs form a subset of the cartesian square of that lattice, see
Figure 11. The mapping

X �→ (R(X), R(X))
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f

m

p

w
f

m

p

w

Fig. 11. The cartesian square of the concept lattice in Figure 10. The abbreviated
object labels are underlined for the first factor and overlined for the second. The shaded
elements correspond to the sixteen pairs (R(X), R(X)), X ⊆ {f, m, p, w}. As an ordered
set, they are isomorphic to the power set of {f, m, p,w}, but they do not form a
sublattice of the depicted lattice. The eight elements on the spine do form a sublattice.
It is isomorphic to the concept lattice in Figure 10.

in this case is indeed an order embedding. Thus the set of images is order iso-
morphic to the power set lattice of {f, m, p, w}. But it is not a sublattice of the
lattice of all pairs, as can easily be seen. In fact, the sublattice generated by
these elements is almost twice as large. It is shown in Figures 12 and 14.

There are three ways to achieve this lattice. One is to generate the sublattice
from the shaded elements in Figure 11. This leads to Figure 12. The second is
to apply Theorem 4 to show that it is the concept lattice of a formal context as
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f

m

p

w
f

m

p

w

Fig. 12. The sublattice generated by the shaded elements in Figure 11. It is redrawn
in Figure 14.

displayed in Figure 9. Since the order under investigation has no isolated points,
we get the formal context shown in Figure 13. Its concept lattice is the lattice
in Figure 14. Finally, we know (also from Theorem 4) that the lattice must be
the order relation of the lattice of order ideals shown in Figure 10. As a quick
check for agreement, we count the size of the order by adding up the sizes of the
principal filters ↑ a. This gives for each element a of the lattice in Figure 10 the
number of pairs (a, x) in the relation. Reading the diagram from top to bottom
and from left to right, we get

1 + 2 + 2 + 4 + 3 + 5 + 6 + 8 = 31,

and this is indeed the size of the lattice in Figure 14.
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f m p w f m p w

f × × × × × ×
m × × × × × ×
p × ×
w × × × ×
f × × × × × × ×
m × × × × × × ×
p × × × × ×
w × × × × × ×

Fig. 13. The formal context for the lattice of rough set approximations as provided by
Theorem 4. The concept lattice is shown in Figure 14.

f

m

p

w

f m

p

w

Fig. 14. The lattice of rough set approximations. The shaded elements are the same
as in Figure 11. They correspond to the pairs (R(X), R(X)), X ⊆ {f, m, p,w}.

One might wonder if the non-shaded elements in Figure 14 are somehow mean-
ingful. There is in fact a simple explanation for them. Suppose that we modify
the ordered set in Figure 10, making it a quasi-order by simply doubling each
element and making the elements of each pair equivalent (that is, comparable
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in both directions). The formal contexts in Figures 10 and 13 will double in
size, simply because each row and each column is repeated. Up to clarification,
the contexts will not change at all. The lattice of Figure 14 remains unchanged,
except that now all elements are shaded.

Finally we come back to Proposition 6, which gives the existence of an involu-
tory anti-automorphism in case that the two representing contexts are the same.
In our case, they are dual to each other (the representing contexts are (U, U, �≤)
and (U, U, �≥)), but since the ordered set under consideration is self-dual, the two
contexts are also equal. Therefore the lattice of rough set approximations has
an involutory anti-automorphism, expressed in the diagram in Figure 14 as a
mirror symmetry at the horizontal middle axis.

Another way to understand this anti-automorphism is to construct the map-
ping directly. The ordered set (U, ≤) is self-dual, and so to each order ideal
there corresponds its dual order filter. This induced an anti-automorphism, say
α, of the lattice of order ideals (the lattice in Figure 10). α maps each or-
der ideal to the complement of its dual order filter. The anti-automorphism α
then induces an anti-automorphism of the order relation: Every pair (x, y) with
x ≤ y is mapped to the pair (α(y), α(x)). Suppose that (x1, y1) ≤ (x2, y2). Then
x1 ≤ x2 and y1 ≤ y2. Because of α(x2) ≤ α(x1) and α(y2) ≤ α(y1) we obtain
(α(x2), α(y2)) ≤ (α(x1), α(y1)).

8 Conclusion

Generalised rough set approximation operators that form a kernel-closure pair
lead to lattices of rough set abstractions. These can conveniently be described
using the P -fusion of formal contexts. If the generalised indiscernibility relation is
a quasi-order, then the approximations can naturally be interpreted as intervals
of “definable sets”, the latter being quasi-order ideals.

References

1. http://roughsets.home.pl/ for an extensive bibliography
2. Ganter, B.: Relational Galois Connections. In: Kuznetsov, S.O., Schmidt, S. (eds.)

ICFCA 2007. LNCS (LNAI), vol. 4390, pp. 1–17. Springer, Heidelberg (2007)
3. Ganter, B., Wille, R.: Formal Concept Analysis – Mathematical Foundations.

Springer, Heidelberg (1999)
4. Pawlak, Z.: Rough Sets. International Journal of Computer and Information Sci-

ences 11, 341–356 (1982)
5. Pawlak, Z.: Rough Sets: Theoretical Aspects of Reasoning About Data. Kluwer

Academic Publishing, Dordrecht (1991)
6. Vickers, S.: Information Systems for continuous posets. Theoretical Computer Sci-

ence 114, 204–221 (1993)

http://roughsets.home.pl/


Scale Coarsening as Feature Selection

Bernhard Ganter and Sergei O. Kuznetsov

Institut für Algebra
Dresden University of Technology

D-01062 Dresden, Germany
Bernhard.Ganter@tu-dresden.de

Department of Applied Mathematics
Higher School of Economics

Kirpichnaya ul. 33/5
105679 Moscow, Russia
skuznetsov@hse.ru

Abstract. We propose a unifying FCA-based framework for some ques-
tions in data analysis and data mining, combining ideas from Rough Set
Theory, JSM-reasoning, and feature selection in machine learning. Unlike
the standard rough set model the indiscernibility relation in our paper is
based on a quasi-order, not necessarily an equivalence relation. Feature
selection, though algorithmically difficult in general, appears to be eas-
ier in many cases of scaled many-valued contexts, because the difficulties
can at least partially be projected to the scale contexts. We propose a
heuristic algorithm for this.

1 Introduction

A paper recycling company gets vast amounts of material delivered for recycling
every day. The first step in their process is to separate the waste from the
recyclable part. This is done automatically: A machine performs certain optical
measurements on every single piece and then decides which fraction it goes to.
We are interested in the rules by which these decisions are made.

The situation is typical for applications of Machine Learning [14], and most
likely the decision rules were obtained from a training data set, using a method of
supervised learning. Machine Learning offers powerful algorithms, in particular
when the data is numerical in nature. Here we concentrate on the more general
case of qualitative data, and formalise the learning scenario as follows: We are
given a formal context (G, M, I) [8], describing the “observations” or “measure-
ments”, together with a set G+ ⊆ G, comprising the objects of interest, also
called the positive examples. Objects from the complement G− = G \ G+ are
called negative examples. The task then is to give a characterisation of G+ in
terms of (G, M, I) (a similar problem may be stated for G−). The nicest case, of
course, is that membership in G+ is equivalent to some attribute combination,
i.e., that G+ is a concept extent of (G, M, I). But even if that is not the case,
often a classification is desired. The second best choice then is to find attribute
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combinations (“classifiers”) that are sufficient for membership in G+. And ide-
ally there should be enough such classifiers to cover all elements of G+. This
motivates our first definition:

Definition 1. Let (G, M, I) be a formal context. A set

G+ ⊆ G

is called grounded or, equivalently, definable, iff

G+ =
⋃

{P ′ | P ⊆ M, P ′ ⊆ G+}.

The word “grounded” is used in JSM-theory of inductive reasoning [2,3,4], and it
is defined there in a slightly different manner: The sets P in the above definition
are required to be (positive) hypotheses for G+, that is, concept intents P
with P ′ ⊆ G+ (see FCA formalization [5] of [4]). But it is easy to see that this
causes no additional difficulty, simply replacing each P by its closure P ′′.

The word “definable” comes from Rough Set Theory [15,16,18,19], where it
is defined in terms of an indiscernibility relation, usually an equivalence re-
lation. Our approach generalises this. The role of the indiscernibility will be
taken by the object quasi-order of the formal context and will not necessarily be
symmetric. This is unfolded in Theorem 1 below. The relation between FCA,
JSM-reasoning and Rough Set Theory was first studied in [17], but for specific
hypotheses from [10].

2 Definability and the Object Quasi-order

The object quasi-order of a formal context (G, M, I) is defined by

g ≤ h : ⇐⇒ g′ ⊇ h′ (g, h ∈ G).

It is indeed reflexive and transitive, but not necessarily anti-symmetric. This
makes it a quasi-order (called a preorder by some authors). The notion of an
order ideal is the same as for ordered sets: a subset S ⊆ G such that h ∈ S
and g ≤ h always implies g ∈ S. The quasi-order ideals are precisely the extents
of the formal context (G, G, �≥), as in the case of an ordered set.

Theorem 1. The definable object sets of (G, M, I) are precisely the quasi-order
ideals of the object quasi-order. Each subset G+ ⊆ G contains a largest definable
set R(G+), and has a smallest definable set containing it, denoted R(G+).

Proof. Let G+ ⊆ G be some subset and let g ∈ G. There exists some P ⊆ M
with

g ∈ P ′ ⊆ G+

iff g′′ ⊆ G+. But since

g′′ = {h | h′ ⊇ g′} = {h | h ≤ g},

this is equivalent to G+ being a quasi-order ideal. Since the family of quasi-order
ideals is closed under set union and intersection, the rest of the proposition is
immediate.
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Several algorithmic questions about the object quasi-order will arise in the se-
quel. We mention here three of them:

Feature Sets: Given a definable set G+ ⊆ G, which subsets F ⊆ M suffice to
make G+ definable? In other words, what are the subsets F ⊆ M for which
G+ =

⋃{P ′ | P ⊆ F, P ′ ⊆ G+}?

Global Reducts: Which subsets of the attribute set of a formal context (G, M, I)
induce the same definability? In other words, what are the subsets F ⊆ M for
which it is true that

g ≤ h ⇐⇒ g′ ∩ F ⊇ h′ ∩ F for all g, h ∈ G?

Separability: Given subsets L, U ⊆ G such that u ≤ l holds for no u ∈ U and
no l ∈ L. Which sets also separate L from U , i.e., for which E ⊆ M is it true
that

u′ ∩ E ⊇ l′ ∩ E

holds for no u ∈ U and no l ∈ L?

In what follows we will show that these problems are algorithmically difficult
if we require the respective subsets of attributes to be minimal.

The lower and upper approximation operators, as the operators R(·)
and R(·) occurring in the theorem are called in Rough Set Theory, are given as
follows:

R(G+) =
⋃

{P ′ | P ⊆ M, P ′ ⊆ G+}
R(G+) =

⋃
{g′′ | g ∈ G+}.

The operators can also be given in terms of the JSM-method. In [6,7] we have
introduced the notion of a hopeless example, by which we meant a positive
example g ∈ G+ which cannot be classified because there is some object h /∈ G+

having all attributes of g. That is g ∈ G+ is hopeless iff there is some h /∈ G+

such that h ≤ g. In that language then

R(G+) = {g ∈ G+ | g is not hopeless}
R(G+) = R(G+) ∪ {h | h ≤ g for some hopeless g ∈ G+}.

The next proposition is now immediate.

Proposition 1. The following conditions are equivalent:

1. G+ is definable,
2. R(G+) = G+,
3. R(G+) = G+.

Example. We illustrate our definitions by means of an artificial example. Con-
sider the following context (G, M, I) where positive examples are fruits. This
information is given by the target attribute “fruit”, which does not belong to the
set of attributes M .
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color firm smooth form fruit
apple yellow no yes round +
grapefruit yellow no no round +
kiwi green no no oval +
plum blue no yes oval +
toy cube green yes yes cubic −
egg white yes yes oval −
tennis ball white no no round −

Consider a natural scaling of the context
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fruit
apple × × × × +
grapefruit × × × × +
kiwi × × × × +
plum × × × × +
toy cube × × × × -
egg × × × × -
tennis ball × × × × -

– A minimal feature set for G+ is the set {yellow, nonfirm, nonround}.
– A minimal feature set for G− is {white, firm}.
– A minimal global reduct is, e.g., the set

{white, yellow, green, smooth, nonsmooth, round, nonround}.
– The set {white, firm} is a minimal set separating G− from G+.
– The set of positive examples is definable, since

R(G+) = R(G+) = G+ = {apple, grapefruit, kiwi, plum}.
– Consider another positive example orange, which is orange, nonfirm, non-

smooth and round. Under the scaling chosen,
orange ′ = {nonfirm, nonsmooth, round}.

Thus this example is hopeless for the scaling, since orange ′ ⊆ tennis ball ′.
– For the extended data set we have

R(G+) = {apple, grapefruit, kiwi, plum, tennis ball, orange}.
R(G+) = {apple, grapefruit, kiwi, plum} and

Thus including orange in the set G+ of positive examples makes G+ unde-
finable (for the given scaling).

3 Feature Sets

Not all attributes in the attribute set M may be necessary for the classification,
often a subset may suffice. Such subsets are called feature sets. In Rough Set
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Theory, minimal feature sets are called reducts. The process of thinning out the
attributes to obtain a feature set is called feature selection [13]. In relation to
FCA-based hypotheses this was studied in [6,1]. To relate these issues to the
Rough Set Theory, we introduce for arbitrary subsets N ⊆ M the relative
approximation operators:

RN (G+) =
⋃

{P ′ | P ⊆ N, P ′ ⊆ G+}
RN (G+) =

⋃
{(g′ ∩ N)′ | g ∈ G+}.

So the relative approximation operators are simply the approximations operators
for the shortened formal context (G, N, I ∩ G × N). They therefore share the
properties of approximation operators. We say that G+ is definable in terms of
N , shortly N-definable or N-grounded iff

RN (G+) = G+ = RN (G+),

where again each of the two equalities implies the other.
If G+ has only one element, we omit the set brackets and write RN (g) instead

of RN ({g}).

Proposition 2. RA(g) ∩ RB(g) = RA∪B(g).

Proof. RA(g)∩RB(g) = (g′∩A)′∩(g′∩B)′ = ((g′∩A)∪(g′∩B))′ = (g′∩(A∪B))′.

There are two different ways to formally define the notion of a feature set. In
the global view, we look for sets inducing the same definable sets as M does. We
call F ⊆ M a global feature set if for all subsets S ⊆ G it holds that

RF (S) = R(S) and RF (S) = R(S),

which is equivalent to the condition that

S is F -definable iff S is definable.

Finding global feature sets is equivalent to the global reduct problem mentioned
above. Its complexity will be treated in the next section.

Our focus here is more on finding feature sets for a given target set G+ of
positive examples. So we are interested in finding, for a fixed given definable set
G+ ⊆ G sets F ⊆ M such that

RF (G+) = G+ = RF (G+).

Such a set will be called a feature set for G+. Note that we do not restrict
ourselves to minimal such sets. But finding small ones is indeed intractable, as
it is for reducts in the case of Rough Sets:

Proposition 3. The problem of finding small feature sets, given by

Instance: A formal context (G, M, I), a definable set G+ ⊆ G, and a
natural number k.
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Question: Is there a feature set for G+ of size ≤ k, i.e., a subset
F ⊆ M such that RF (G+) = G+ and |F | ≤ k?

is NP–complete.

Proof. The problem is in NP , because for testing if a given F ⊆ M is a feature
set we only need to check if

⋃{(g′ ∩ F )′ | g ∈ G+} = G+. This can clearly be
done in polynomial time.

To show that the problem is NP-hard, we reduce it to a problem well known
to be NP-complete: Finding transversals of a family of sets:

Instance: A set M , a family St, t ∈ T of nonempty proper subsets of
M (here T is some index set), and an integer k.

Question: Is there a subset F ⊆ M , |F | ≤ k, such that F ∩St �= ∅ for
all t ∈ T ?

Given an instance of the transversal problem, we can construct a formal context
(G, M, I) by letting G := T ∪ {g0}, t′ := St for t �= g0 and g′0 := ∅. Moreover,
we set G+ := T . It is easy to check that F ⊆ M is a feature set for G+ iff it is
a transversal for {St | t ∈ T }.

Our approach to finding feature sets for G+ is an indirect one. Rather than
building such sets bottom-up, we assume that we are already given one, say F ,
where F = M is a possible choice. Then we try thinning F , using the following
strategy: We consider some subset of F which is not a feature set for G+ and
investigate which elements of F must be added to extend that subset to a feature
set for G+. There will be no unique answer to this question. Our goal is to
describe all possible solutions.

More formally, let F be a feature set for G+, so that

RF (G+) = G+ = RF (G+).

Fix some subset N ⊆ F which is not a feature set, so that

RN (G+) � G+ � RN (G+).

Then both the lower boundary

L := G+ \ RN (G+)

and the upper boundary

U := RN (G+) \ G+

are nonempty sets. The lower boundary consists of those elements g ∈ G+ which
are not in the extent of any hypothesis H ⊆ N with H ′ ⊆ G+.

Theorem 2. Let N, E ⊆ M and let L, U denote the lower and upper boundary
with respect to N . Then N ∪ E is a feature set for G+ iff for all g ∈ L it holds
that

RN (g) ∩ RE(g) ⊆ G+.

A sufficient condition is
RE(L) ∩ U = ∅.



Scale Coarsening as Feature Selection 223

Proof. N ∪ E is a feature set for G+ iff each object g ∈ G+ is implied by some
P ⊆ N ∪ E with P ′ ⊆ G+. For objects in RN (G+) this is clear anyway, so it
suffices to consider objects from the lower boundary L = G+ \ RN (G+). For
every such object g ∈ L we must have that

RN∪E(g) ⊆ G+.

By Proposition 2, this is equivalent to

RN (g) ∩ RE(g) ⊆ G+ for all g ∈ L.

Since RN (g) ⊆ RN (G+) holds anyway, it suffices that

RE(g) ∩ U = ∅

holds for all g ∈ L. But because of RE(L) =
⋃

g∈L RE(g) this can be summarised
to

RE(L) ∩ U = ∅.

4 Global Reducts and Separators

Finding minimal global reducts may be hard, which is expressed by the following

Proposition 4. The following problem is NP-complete1:

Instance: A formal context (G, M, I) and a natural number k.
Question: Is there a subset F ⊆ M , |F | ≤ k, such that

g ≤ h ⇐⇒ g′ ∩ F ⊇ h′ ∩ F for all g, h ∈ G?

Proof. We reduce “3-dimensional matching”, a well-known NP-complete prob-
lem [9], to our problem. It requires to decide, for given disjoint sets X , Y , and
Z of equal cardinality k and a set T ⊆ X × Y × Z, if T contains a matching,
that is, a subset T ′ ⊆ T such that |T ′| = k and no two elements of T ′ agree in
any coordinate. Such a matching can of course only exist if the coordinates of T
cover the sets X , Y , and Z, respectively, so this can be assumed as additional
precondition.

Given such an instance T for some k > 1, we can construct a formal context
having a global reduct of size ≤ k if and only if the instance contains a matching.
The construction is as follows. Let

G0 := {(w, 0) | w ∈ X ∪ Y ∪ Z}, and
G1 := {(w, 1) | w ∈ X ∪ Y ∪ Z}.

We investigate the formal context (G, T ∪̇ {mX , mY , mZ}, I) with G := G0∪G1,
where the incidence is defined as follows:
1 See the acknowledgements in Section 7 below.
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m′
X := X × {0, 1}, m′

Y := Y × {0, 1}, m′
Z := Z × {0, 1},

and, for each t =: (x, y, z) ∈ T ,
t′ := G0 \ {(x, 0), (y, 0), (z, 0)} ∪ {(x, 1), (y, 1), (z, 1)}.

When is g ≤ h in this formal context? Recall that objects are pairs (w, i), where
w ∈ X ∪ Y ∪ Z and i ∈ {0, 1}. An analysis of the possible cases shows that
(w1, i1) ≤ (w2, i2) holds if and only if w1 and w2 are from the same set (that
is, {w1, w2} is a subset of either X or Y or Z), w1 �= w2, i1 = 0 and i2 = 1.
Actually, this order is obtained exactly from those subsets of T containing triples
such that each element of X ∪Y ∪Z occurs at least once as a component. Such a
subset has cardinality ≤ k if and only if it is a matching. Therefore the existence
of a 3-dimensional matching is reduced to the problem of finding a global reduct
with ≤ k attributes.

A similar result holds for the problem of finding a minimal separator, i.e., a
minimal set of attributes separating a set of objects from another one, as stated
by the following

Proposition 5. The following minimal separator problem is NP-complete:

Instance: A formal context (G, M, I), two sets of objects L, U ⊆ G
such that u ≤ l holds for no l ∈ L, u ∈ U , and a natural number k.

Question: Is there a subset F ⊆ M , |F | ≤ k such that

u′ ∩ F ⊇ l′ ∩ F holds for no u ∈ U, l ∈ L?

Proof. We reduce the minimal transversal problem

Instance: A set M , a family St, t ∈ T of nonempty proper subsets of
M (here T is some index set), and an integer k.

Question: Is there a subset F ⊆ M , |F | ≤ k, such that F ∩St �= ∅ for
all t ∈ T ?

Given an instance of the transversal problem, we can construct a formal context
(G, M, I) by letting G := T ∪ {g0}, t′ := M \ St for t �= g0 and g′0 := M . Let
L = {g0}, U = T . It is easy to check that F ⊆ M separates L = {g0} from
U = T iff F is a transversal for {St | t ∈ T }. The reduction is completed, its
polynomiality, as well as the membership of the minimal separator problem in
NP are obvious.

5 Scale Coarsening

Theorem 2 was tailored for applications to scaled many-valued contexts. For
understanding this article it is not required to recall the precise definitions
(which can be found in [8]). It suffices to understand that these are formal
contexts (G, M, I) for which the attribute set M can be subdivided into subsets
Ms, s ∈ S, such that each such Ms comes from a standardised formal context



Scale Coarsening as Feature Selection 225

Ss := (Gs, Ms, Is), a “scale”. Some scales are used frequently because of their
interpretation and their particularly simple structure, like “nominal”, “ordinal”
or “interordinal” scales. For these, the algorithmic problems mentioned above are
easy to solve.

The heuristic procedure that we suggest for feature selection in scaled many
valued contexts builds on this. Feature selection will result in coarser scales,
because some scale attributes will not be used. We propose the following strategy:

– Start with some feature set F , for example F := M .
– Then pick a scale, one after another, and

1. remove the set Ms of scale attributes from the feature set.
2. The result N := F \ Ms may fail to be a feature set. In that case, use

Theorem 2 to find an appropriate set E ⊆ F \ N such that N ∪ E is a
feature set.

3. Replace F by N ∪ E, and continue.

Note that choosing E can be done in two ways, according to Theorem 2.
Either we use the equivalence stated in the first part of the theorem, which gives
the precise results. Or we use the sufficient condition given in the second part.
Note that this amounts to solving the separation problem stated above, but only
of the formal context (G, E, I ∩ (G × E)).

This is, as already said, a heuristic procedure. Its result depends on the se-
quence in which the scales are handled, and even if the set E is chosen minimal
in each step, we do not claim that the result is a minimal reduct. This heuris-
tic can be useful for data with very large sets of attributes like those described
in [12], where standard context reduction [8] is difficult because it is hard even
to keep the context in the memory.

However, we expect that the method leads to reasonably small feature sets in a
reasonable computing time, since the application of Theorem 2 avoids exhaustive
search in testing whether a subset of attributes is good (but not in finding the
minimal reduct itself) by projecting the problem to standardised scales.

But more importantly, the method is flexible enough to include other criteria
into the search for good feature sets. Small size is not always the most desirable
property, and other aspects may be more important. The next section gives an
example of this.

6 To Avoid Overfitting

Recall the example that was mentioned in the introduction, where paper samples
were to be classified based on the spectra of the light spectra they emit. We are
actually working on such a data set (it is too large to be discussed here in detail).
There the spectra are given with such a precision that virtually every subset of
the training data set is grounded, simply because no two of the spectra coincide
precisely in every decimal digit. Thus the condition of definability,

G+ =
⋃

{P ′ | P ⊆ M, P ′ ⊆ G+},
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is satisfied because for each g ∈ G+ we get as a classifying attribute set P := g′,
with P ′ = {g}.

However, such a classification will probably be useless when the classification
rules learnt from the training set are to be applied to other data. Then, since
the positive examples in the training set have been described so precisely, their
descriptions will most likely not fit new examples outside the training set. This
effect is called overfitting. There are many suggestions how this can be avoided.

In the original version of the JSM-method, for example, it is required that only
rules are used for classification that apply to at least two positive examples. A
set G+ ⊆ G is called sufficiently grounded if for each g in G+ there exists
some h ∈ G+ such that

{g, h}′′ ⊆ G+.

This is the case if and only if

G+ =
⋃

{P ′ | P ⊆ M, P = P ′′, P ′ ⊆ G+, |P ′| ≥ 2}.

Note that the requirement P = P ′′ can be omitted here.
If the set of positive training examples is sufficiently grounded, it is possible to

allowing only attribute sets P ⊆ M as classifiers whose support |P ′| is at least
2. It is reasonable that this restriction lowers the effect of overfitting, because
an attribute combination that applies to at least two different objects is more
likely to apply to other objects as well. This approach can, of course, be varied
by replacing 2 by other thresholds and so on. We are not going into such details
here. Instead, we shall study the following problem: Call F ⊆ M a strong
feature set for G+ if

G+ =
⋃

{P ′ | P ⊆ F, P ′ ⊆ G+, |P ′| ≥ 2}.

Clearly G+ is sufficiently grounded if and only if there is a strong feature
set for G+. However, even if G+ is sufficiently grounded, not every feature set
for G+ must be strong. The question to investigate therefore is: How can the
feature selection procedure described in Section 5 be modified to obtain strong
feature sets? Unfortunately, the necessary modification of Theorem 2 is not very
elegant:

Proposition 6. Suppose that F ⊆ M is a strong feature set for G+ and that
N, E ⊆ F . Then N ∪ E is a strong feature set for G+ iff for each g ∈ G+ there
is some h such that

({g, h}′ ∩ N)′ ∩ ({g, h}′ ∩ E)′ ⊆ G+.

This is rather obvious. Not so obvious, but not a hopeless task, is how this can
be made efficient in an algorithm. We pose this as a problem.

7 Conclusion

We considered a framework for selecting important subsets of attributes (or
attribute values) in FCA-based knowledge discovery. This framework uses the
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ideas of reducts, upper and lower approximations of the Rough Set Theory, at the
same time generalizing the latter by allowing for a quasi-order (not necessarily
equivalence) indiscernibility relation. We showed that choosing smallest repre-
sentations (global reducts, feature sets) is intractable (NP-complete) in general
settings, and propose a heuristic based on coarsening the set of attribute values.
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Abstract. When cancer breaks out, central processes in the cell are
disturbed. These disturbances are often due to abnormalities in gene ex-
pression. The microarray technology allows to monitor the expression of
thousands of genes in human cells simultaneously. It is common knowl-
edge that tumor cells show different gene expression profiles compared
to normal tissue but also to tissue obtained from metastases. However,
the identification of biomarkers, that is sets of genes whose expression
change is highly correlated with the disease, poses a great challenge. In-
creasingly important is the extraction of combinatorial biomarkers. Here,
the correlation to the disease is a result of the joint expression of several
genes, whereas the single genes do not necessarily distinguish well be-
tween healthy and diseased tissue types. In this paper we describe how
formal concept analysis can be used to identify gene combinations that
are able to distinguish between tumor- and metastasis tissue in breast
cancer based on microarray gene expression data.

Keywords: Gene expression, formal concept analysis, breast cancer,
classification.

1 Introduction

Complex diseases like cancer have become the major challenge of medical re-
search of our time. Many of these diseases are known to have a genetic compo-
nent. That is why DNA sequence analysis and gene expression measurements
play an increasing role both in fundamental research and clinical treatment of
such diseases. In this paper, the focus is on combinatorial biomarkers that can
be used for diagnosis or prognosis of a disease. A combinatorial biomarker is a
set of genes that is able to distinguish reliably between two classes (for example
healthy and cancerous tissue or metastasis and primary tumor) while no single
member gene is required to do so. This means that a combinatorial biomarker
can consist of genes whose individual behavior is rather uncorrelated to the
classes of samples – it is the combination of the genes that provides the discrim-
inative power. Up to now, many single genes have been identified the mutation
or abnormal activity of which promotes the outbreak of cancer. In the case of
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breast cancer for example, several studies have found that a mutation in one
of the genes BRCA1 or BRCA2 (BRCA stands for BReast CAncer) implies an
increased risk to develop the disease (see for example [4,10,12]). However, there
are still many cases that cannot be explained by abnormalities of single genes.
Combinatorial biomarkers are an obvious extension of the single gene approach
and a possibility to gain a better understanding of complex diseases.

There exists a method called logical analysis of data (LAD) that has shown
its ability to find combinatorial biomarkers of satisfying quality in several appli-
cations (see [1,2,3]). LAD takes a formal context as input and searches for prime
patterns, which are minimal sets of attributes describing only objects from a sin-
gle class. These patterns are then combined to obtain a combinatorial biomarker
that applies to all objects of the class of interest. The patterns in LAD are es-
sentially minimal generators in the sense of [5] of special concept intents of the
input context. Therefore it is obvious that formal concept analysis (FCA) should
be able to identify high-quality combinatorial biomarkers as well. The attribute
combinations in formal concept intents are each associated to a unique set of
objects. This principle is taken advantage of to identify combinatorial biomark-
ers that are able to distinguish primary tumor samples from metastasis samples
based on gene expression data. This is done via a standard classification approach
followed by a heuristic biomarker selection. The paper is organized as follows:
In Section 2 we will shortly review the biological background and explain what
gene expression data are. Section 3 contains the description of a straightforward
FCA classification method that produces a candidate pool of genes from which
combinatorial biomarkers are then extracted by a simple heuristic. We apply
the method to generate combinatorial biomarkers that are able to distinguish
primary tumors from metastases in a breast cancer data set in Section 4. The
paper closes with a discussion of the results and an outlook in Section 5.

2 Preliminaries

In this section we explain the biological background and recall the notions from
FCA that will be used in the paper.

2.1 Gene Expression

The processes in a living cell are based on chemical reactions between molecules.
Proteins are molecules that are produced by each cell from blueprints encoded
on the DNA. A piece of DNA that encodes the blueprint of a protein is called a
gene. By changing the amount or composition of the proteins present inside the
cell, the chemical reactions that can take place can be controlled. The mechanism
that produces a protein from its gene is called gene expression. It consists of
two steps: transcription and translation. Figure 1 illustrates the gene expression
process. In the first step, the transcription, a copy of the gene on the DNA is
produced. The “hardware” of this copy is an RNA molecule, called messenger
RNA (or mRNA for short). From the mRNA copy of the gene, the protein is



Identification of Combinatorial Biomarkers in Breast Cancer 231

Fig. 1. Illustration of the gene expression process

produced in the translation step. The more mRNA copies of a gene are present
in the cell, the more proteins can be produced from them. Therefore, the state
of a cell can be inferred from measurements of mRNA abundance. On the hu-
man DNA there are approximately 25.000 genes (see [7]). Modern microarray
technology allows to measure the abundance of mRNA copies for all genes si-
multaneously. Due to the detection limit of microarrays, mRNA concentrations
of single cells are usually not measured. Instead, one takes homogeneous samples
of cell populations (for example a piece of homogeneous tissue from a biopsy),
extracts the mRNA molecules contained therein and measures their abundances.
The result of such a microarray measurement is an n-dimensional vector e where
eg, g ∈ {1, . . . n} reflects the mRNA abundance of gene g in the sample: The
higher eg is, the more mRNA transcripts are present. The value eg is called
expression value of gene g. A gene expression data set is a collection of
such sample measurements summarized in an n × m matrix E where each row
corresponds to a gene and each column corresponds to a sample, so egs is the
expression value of gene g in sample s, s ∈ {1, . . . , m}. Our goal in this paper is
to find gene combinations that are able to discriminate between two classes of
samples. For this purpose it is often more convenient to consider the expression
changes of genes between different samples rather than their absolute expression
values. The common measure for the expression change of a gene g between two
samples s and t is the log ratio. It is defined by

lg = log2

(egs

egt

)
. (1)

If a gene has a log ratio of 1, then its expression value is two times higher in
sample s compared to t. A log ratio of -1 means that the expression value of the
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gene is two times lower in sample s than in sample t. It is a usual and unfortunate
situation that gene expression matrices contain many more genes than samples.
This imbalance introduces great difficulties for the statistical analysis of gene
expression data.

2.2 Formal Concept Analysis

Our notation follows essentially that of [8]. Let O be a set of objects, P be a set
of properties (also called attributes), and I ⊆ O × P a binary relation. We use
the letters O and P for the set of objects and attributes to avoid confusion with
the set of genes G that will occur later on in the paper. If (o, p) ∈ I we also write
for short oIp and read “object o has the property p”. The triple K = (O, P, I) is
called a formal context. We consider the usual derivation operators: Let A ⊆ O
and B ⊆ P . Then

A′ = {p ∈ P : oIp ∀o ∈ A},

B′ = {o ∈ O : oIp ∀p ∈ B}. (2)

For sets containing only a single object o we will use the shorter notation o′

instead of {o}′ and similarly for attributes. The pair (A, B) is a concept of
K = (O, P, I) if A′ = B and B′ = A. The set A is called extent and B is called
intent of (A, B). A formal context as defined above is one-valued, that is an
object either does have the (one value of the) attribute or does not have the (one
value of the) attribute. For our discussion we need many-valued contexts because
our attributes will have several values that can apply to an object. Let W be the
set of values attributes can take. Then the quadruple K = (O, P, W, I) is called
a many-valued context where I is now a ternary relation (I ⊆ O × P × W ). If
(o, p, w) ∈ I we also write shortly p(o) = w and read “the value of property p for
object o is w”. Furthermore, if o is an object and p a property, then p(o) = w and
p(o) = v must imply that w = v. Before one can find concepts in a many-valued
context, one has to turn it into a one-valued one by discretizing the many-valued
attributes. This procedure is called conceptual scaling in FCA.

3 FCA Method for Combinatorial Biomarkers

The method we propose to identify combinatorial biomarkers can be applied
both to absolute gene expression data or log ratios as input data. In both cases
the input data are considered as a many-valued formal context K = (S, G, W, I)
with S being the set of samples, G being the set of genes, and (s, g, w) ∈ I (or
g(s) = w) if in sample s gene g has expression value or log ratio w, respec-
tively. Furthermore the samples belong to two disjoint classes, a target class Ct

(say diseased tissue) and a background class Cb (healthy tissue). The task is to
find a set of genes that distinguishes between these two classes, while no single
member gene is required to do so. We assume that the class memberships of the
samples in the gene expression data set are known. The task of finding a combi-
natorial biomarker thus is a classical classification problem with some additional
constraints and is tackled as such.
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3.1 Training- and Validation Context

First, the many-valued context K = (S, G, W, I) is divided into two subcontexts
KT = (ST , G, W, I) and KV = (SV , G, W, I) with ST and SV being disjoint
and ST ∪SV = S. KT is called training context and KV validation context.
The training context will be used to identify combinatorial biomarkers by means
of an FCA classification method while KV serves for validation purposes. It is
necessary that ST contains samples from both classes and desirable that SV does
so, too.

3.2 Scaling

To identify combinatorial biomarkers for the target class, we first have to scale
the training context. Note that the set of genes G here plays the role of the
attribute set of KT . Depending on the nature of the input data (absolute gene
expression values or log ratios) we suggest two different scaling procedures.

Absolute expression values. We suggest that the scaling procedure be guided
by the peculiarities exhibited by gene expression data sets in general. These are

1. the incomparability of expression values between genes and
2. a rather high noise level.

We want to use a dichotomic scale of the form

Sg :=
� tg > tg

� tg X
> tg X

(3)

for each gene g. This means that we choose a threshold tg for gene g and replace
the many-valued attribute g by the two one-valued attributes “expression value
of g � tg” and “expression value of g > tg”. The threshold value tg must be
chosen specifically for each gene g due to the incomparability of expression values
between genes. Furthermore, the threshold should be robust against the noise
that is present in gene expression data. More precisely, if the noise level in the
data is assumed to be �, then we require that

max{g(s) : g(s) � tg, s ∈ ST } � tg − � and
min{g(s) : g(s) > tg, s ∈ ST } > tg + �. (4)

This condition assures that even if the training context is perturbed by noise
as high as �, the use of the thresholds tg results in the same one-valued context
as obtained for the original training context and the subsequent combinatorial
biomarker identification remains the same. We implemented the scaling proce-
dure in such a way that we sort the expression values of gene g in the validation
context so that eg1 � eg2 � · · · � eg|ST | and then look for the largest interval
[egi, egi+1], i ∈ {1, . . . , |ST | − 1}. Let this interval be [egk, egk+1] (in the case
that there are several largest intervals, then one of them is selected randomly).
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If egk+1 − egk � 2�, then condition (4) is satisfied and the threshold tg is chosen
to be

tg =
egk+1 + egk

2
. (5)

All genes which do not possess a threshold tg satisfying condition (4) are dropped
from the context with the intention to enhance the robustness against noise of
the combinatorial biomarker. Thus, the scaling procedure implicitly includes
a feature selection method, the strictness of which can be controlled via the
parameter �.

Log ratios. In the case of log ratios we can use a single scale for all attributes.
It is given by

S :=
� −t � t

� −t X
� t X

(6)

Here, t is a threshold value from R
+. This scaling replaces each many-valued

attribute g by the two one-valued attributes “log ratio of g � −t” and “log ratio
of g � t”. A typical threshold that is used in gene expression data analysis is
1, that is the gene must show a fold change of at least 21 = 2 in its expression.
Depending on the noise in the data set and the desired selectivity, t can be
chosen smaller or greater. The greater t is chosen, the fewer samples will satisfy
the scaled attributes and the subsequent search for combinatorial biomarkers
will be consequently limited to genes showing at least a 2t-fold change of their
expression in one of the samples in ST .

3.3 Identification Process

The scaled training context is given by KT = (ST , Gs, J), where Gs denotes
the set of the scaled attributes and J is the obtained incidence relation. The
biomarker identification utilizes the idea that all FCA classification approaches
rely on and that is formulated for example in [11] in terms of positive and
negative hypotheses. To avoid the splitting of KT into a positive and negative
subcontext as in [11] we simplify notations and consider so called homogeneous
concept intents.

Definition: Let (A, B) be a formal concept. B is called a homogeneous con-
cept intent if all objects in A belong to the same class.

Let B ⊆ Gs be a homogeneous concept intent. Obviously, B identifies a subset
of samples that belong to the same class. It is furthermore clear that if B1 is
a homogeneous concept intent and B2 is a concept intent with B2 ⊃ B1, then
B2 is also a homogeneous concept intent. For the identification of combinatorial
biomarkers we are especially interested in the homogeneous concept intents for
the target class. Among these intents, the smallest ones, containing the least
attributes, are the most general ones which apply to the largest subsets of target
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samples. Therefore, we only generate the smallest homogeneous concept intents,
that is the ones which are closest to the top element of the concept lattice of KT .
If the extent corresponding to a homogeneous concept intent B contains all sam-
ples of the target class in the training context, then B contains all combinatorial
biomarkers for that class. In fact, B is in this case the largest combinatorial
biomarker for the target class in KT . It is also possible that there is no sin-
gle homogeneous concept intent for the target class. Then (with an appropriate
scaling) the class is described by several homogeneous concept intents which
can be interpreted as a separation into subclasses. In this case, we would treat
each subclass separately and consequently construct combinatorial biomarkers
for each of the subclasses.

The homogeneous concept intents can be computed in the following way:

1. Test whether ST ∩ Ct is a concept extent. If so, return (ST ∩ Ct)′.
2. Otherwise, compute the iceberg lattice of the subcontext ((ST ∩Ct)′′, Gs, J)

and use the homogeneity of a concept intent as a stopping criterion (instead
of the usual support threshold used in iceberg lattices (see [14] for an intro-
duction to iceberg lattices)). Return all found homogeneous concept intents.

This procedure can be implemented using any algorithm that computes the
concept lattice in a top-down manner (for example we use Bordat’s algorithm
in the version described in [6]).

3.4 Postprocessing and Validation

Due to the imbalance in the gene expression data (there are thousands of genes
describing only few samples) it is expected that the homogeneous concept intent
B for the target class contains many more genes than are necessary to distinguish
reliably between the target and background class. Combinatorial biomarkers that
are to be used for diagnosis or prognosis of a disease should be both short and
robust. If a biomarker contains too many genes its evaluation for a single patient
is time consuming and tedious and therefore expensive. On the other hand, the
marker must be highly robust against noise and identify its target class reliably.
Having these requirements in mind, we extract from the found homogeneous
concept intent subsets of genes that suffice to identify the target class, contain
only few genes, and show a certain robustness within the training context. More
precisely, we identify subsets M ⊂ Gs with

a) M ′ = B′,
b) |M | � k, and (7)
c) ∀s ∈ ST \ Ct there are at least r genes g1, . . . , gr ∈ M

with ∀i ∈ {1, . . . , r} gi /∈ s′.

Here k is the maximum number of genes the biomarker is allowed to contain
and r is the minimum number of genes in a sample from the background class
that do not satisfy the conditions imposed by the biomarker. The values of these
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parameters must be selected according to the application at hand. To simplify
notations, we set for s ∈ ST \ Ct

gap(s) = |{g ∈ M : g /∈ s′}|. (8)

An exhaustive search for all combinations of at most k genes is clearly prohibitive
due to its computational complexity. That is why we suggest a simple heuristic
which is given in pseudo code in Table 1.

Table 1. Heuristic to extract candidate combinatorial biomarkers

1. set M := ∅, L := ST \ Ct, iter := 0, maxiter := 1000
2. repeat
3. find a sample s ∈ L with |s′ ∩ B| maximal
4. a := r − gap(s)
5. D := {g ∈ B : g /∈ s′}
6. randomly select genes g1, . . . , ga from D and set M := M ∪ {g1, . . . , ga}
7. L := L \ {s ∈ L : gap(s) � r}
8. if |M | > k, then M := ∅, L := ST \ Ct, iter := iter+1
9. until (M ′ = ST ∩ Ct) and (L = ∅) or (iter = maxiter)

Starting with an empty set of genes M , we successively collect genes from the
homogeneous concept intent B into M until the conditions a) and c) from (7) are
satisfied. For this purpose we keep a list L of the samples from the background
class for which condition c) is not yet satisfied. In order for a sample s ∈ ST \Ct

to fulfill condition c), r genes from the set D = {g ∈ B : g /∈ s′} must be
contained in the biomarker M . This is achieved by successively adding genes
from D to M , starting with the most difficult samples, that is samples s for
which |s′ ∩ B| is maximal (lines 3. to 6.). When sample s is considered, M
contains already gap(s) genes whose threshold conditions are not satisfied by s.
Therefore, only a genes need to be added to M to achieve the r genes required
by condition c) for s (lines 4. and 6.). After each addition of genes to M , samples
from the background set that satisfy condition c) are removed from L (line 7.).
If during this procedure |M | exceeds the preselected threshold k, then we restart
the selection procedure (line 8.). To prevent a possible nonterminating loop, the
selection procedure is run at most maxiter times. The randomness in the genes’
selection produces a variety of different biomarker candidates when running the
procedure several times.

3.5 Validation

After having produced a set of different candidate biomarkers, their validity has
to be assessed. This is done by using the validation context KV = (SV , G, W, I).
Each biomarker candidate consists of a set of conditions of the form

“the value of gene g ♦ t”,
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where ♦ ∈ {�, �, >} and t is some threshold whose value depends on the scaling
that was applied. We simply test for each sample s ∈ SV whether or not it
satisfies the conditions specified in each of the biomarker candidates. A candidate
biomarker whose conditions are satisfied by all samples s ∈ SV ∩Ct and by none
of the background samples has proved its ability to recognize the target class
correctly. This means that it is a valid combinatorial biomarker for class Ct with
respect to our given expression data.

4 Application to Breast Cancer

We now apply the method described in Section 3 to a real world data set of gene
expression data gained from biopsy samples of breast cancer tumors. The gene
expression measurements were performed using Affymetrix GeneChip R© technol-
ogy ([9]). The data were produced in a study involving five clinical laboratories
located in Cologne, Düsseldorf, Bonn, Berlin, and Munich. The data set contains
50 samples, 20 of which are metastases, 28 are primary tumors, and 2 are samples
from healthy tissue. For each sample, the expression of 22.215 genes was mea-
sured, so we have a gene expression context K = (S, G, W, I) with |S| = 50 and
|G| = 22.215. Our aim is to find biomarkers that identify metastases. In addition
to the noise problem that applies to all gene expression data, the data set from
this study contains systematic biases because the biopsy samples were prepared
by different laboratories. On the one hand this complicates the identification of
a biomarker as classification procedures work best for homogeneous data sets,
but on the other hand this is also a more realistic scenario as a biomarker used
in clinical practice will of course have to work regardless of the laboratory that
provides the sample.

From the 50 samples, 16 primary tumors and 13 metastases were randomly
selected as the training context KT . The validation context contains the remain-
ing samples. The absolute expression values in both KT and KV are transformed
into log ratios using the mean expression value of the 16 primary tumors in KT

as reference. Formally, the log ratio of gene g in sample s is computed as

lgs = log2

(egs

ē

)
, (9)

where ē is the mean of the expression values of gene g across the 16 primary
tumor samples in the training context. Scaling of KT is performed according to
the log ratio scaling method described in Subsection 3.2 with threshold t = 1.
There is exactly one homogeneous concept intent B for the class of metastasis
samples in KT . This concept intent contains 42 genes. Using the heuristic from
Table 1 with k = 4 and r = 2 we find 8 combinatorial biomarkers that pass the
validation. The majority of the genes contained in these markers have functions
related to the extracellular region, a finding that fits well with the fact that
in order to migrate through the body, metastasis cells must adapt their outer
structure and surrounding. Other genes are involved in processes that are specific
to breast and brain tissue which also fits nicely because the samples in the data
set stem from these locations (primary tumors from breast and metastases from
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brain). Three of the genes have already been reported in the literature to be
associated to cancer progression and metastasis development.

To get an impression of how our FCA-based biomarker identification method
compares with other classification methods, we used the scaled context of the
breast cancer data set to infer decision trees with the function “treefit” supplied
by the MATLAB R© software ([13]). We used both our selection heuristic based
on the homogeneous concept intent and the treefit function to generate 2000
biomarkers. The parameters for the selection method were k = 4 and r = 2. The
treefit function was used with default parameters. As the decision tree builder is
deterministic, we randomly ordered the columns of the training context in order
to produce a variety of different decision trees. The results of the validation of
the 2000 biomarkers are summarized in Table 2. We compare three parameters.
– accuracy: number of correctly classified samples divided by the number of

all samples (averaged over all produced biomarkers).
– valid: number of valid biomarkers produced.
– genes: average number of genes used in the biomarkers.

Table 2. Comparison of the FCA method and the MATLABR© decision tree method
for biomarker identification

accuracy valid genes
FCA 85.3 % 29 3.8

treefit 81.0 % 0 1

One can see that the average accuracy of both methods is not dramatically
different. However, the FCA method produces a quite satisfying number of valid
biomarkers (that is the accuracy for these biomarkers is 100 %) while treefit
produces not a single one. A reason for this can be seen in the third column
of Table 2 which contains the average number of genes used in the biomarkers.
All produced decision trees contain exactly one gene. This is because there are
several single genes that are able to distinguish between primary tumor and
metastasis in the training context, but none of them can make this distinction
in the validation context.

5 Discussion and Outlook

The results from the breast cancer data are encouraging. They show that our
method is able to find valid combinatorial biomarkers in real world gene ex-
pression data. Even in the difficult situation of working with a heterogeneous
data set, the method produced satisfying results. The identified combinatorial
biomarkers do not only show the desired behavior with respect to their ability of
metastasis recognition but also include genes that make sense from a biological
point of view. When comparing our method to a method using decision trees, we
see that the FCA approach outperforms the decision tree algorithm. Given the
rather small size of the study, we are still far from the introduction of our combi-
natorial biomarkers into clinical practice, but our results can already be used to
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investigate the processes involved in the development of metastases. Instead of
the usual approach, that thrives to find single genes whose expression differs be-
tween metastases and primary tumors, our combinatorial biomarkers shed light
on the interplay between genes that is characteristic for metastases. This meets
the concerns of a recent direction of medical research which assumes that the de-
velopment of metastases does not depend on single genes but is much more com-
plex and requires a certain constellation of expression changes in order to occur.

Future research will center around the refinement of the method for combina-
torial biomarker search and its application to other data sets. The basics of the
method, namely to make use of the strength of FCA to find attribute combina-
tions that identify given sets of objects uniquely, have already proven useful and
will be kept. To speed up the process of the final biomarker selection, the addi-
tion of further criteria will be evaluated. Such criteria shall impose conditions on
the maximum expression value of a gene to exclude genes that were measured
near the detection limit or filter out genes that show a rather random behavior
across the samples. Instead of stopping once a homogeneous concept intent is
found, it might also prove interesting to unfold the structure of the concept lat-
tice below this concept intent further to see whether there are subclasses and find
gene combinations that describe them. Furthermore, a statistical analysis will be
included to assess the significance of the identified combinatorial biomarkers and
comparisons to further classification methods (such as artificial neural networks
or support vector machines) will be made. To enter clinical practice, a much
larger study is necessary to assess the applicability of FCA-based combinatorial
biomarkers in the detail and soundness required by medical applications.
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Abstract. Because of the expansion of geo-positioning tools and the de-
mocratization of geographical information, the amount of geo-localized
data that is available around the world keeps increasing. So, the ability to
efficiently retrieve informations in function of their geographical facet is
an important issue. In addition to individual properties such as position
and shape, spatial relations between objects are an important criteria
for selecting and reaching objects of interest: e.g., given a set of touris-
tic points, selecting those having a nearby hotel or reaching the nearby
hotels. In this paper, we propose Logical Concept Analysis (LCA) and
its handling of relations for representing and reasoning on various kinds
of spatial relations: e.g., Euclidean distance, topological relations. Fur-
thermore, we present an original way of navigating in geolocalized data,
and compare the benefits of our approach with traditional Geographical
Information Systems (GIS).

1 Introduction

In previous work [1], we have applied Logical Information Systems (LIS) to
explore of geographical data. LIS allow to query and browse a collection of
geographical objects using spatial properties, such as position and shape, and
non spatial ones, such as description and date. The geographical objects were
described in isolation, not taking into account their mutual organization. How-
ever, relations, and particularly spatial relations, play an important role when
describing and exploring geographical data. Indeed, geographical information
is tradionnaly split in thematic layers, and localization is often the only com-
mon property between these different layers. Quantitative and qualitative spatial
relations between geographical objects may be easily derived from objects local-
ization. Spatial relations enhance the description of geographical data, improve
the expressivity of spatial querying and facilitate the combination of data dealing
with several thematics. For instance, one may want to find all bus stops under

� This work is funded by a scholarship from Région Bretagne.

R. Medina and S. Obiedkov (Eds.): ICFCA 2008, LNAI 4933, pp. 241–257, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



242 O. Bedel, S. Ferré, and O. Ridoux

some distance from some place; or to find appartments that are close to a public
garden that contains a lake.

LIS are founded on Logical Concept Analysis (LCA) [2]. Like FCA, LCA al-
lows to group objects into concepts on the basis of individual properties, but
moreover LCA also enables to consider arbitrary relations between concepts [3].
FCA does not natively support relations, however several extensions have been
proposed in this sense: Power Context Families [4] and Relational Concept Anal-
ysis (RCA) [5]. These extensions are discussed in Section 2, and the choice of
LCA is motivated within the scope of describing spatial relations and exploring
geographical data. Section 3 recalls the useful definitions of LCA.

There are various formalisms to represent and reason on spatial relations, from
purely numeric relations [6] to purely symbolic relations [7]. We show LCA covers
a wide range of spatial relations by applying it to two different kinds of spatial
relations (Section 4). The first kind is a numeric spatial relation, the distance
between objects, where relations are described by a precise value, and intervals
of distance can be used in queries. The second kind is a symbolic spatial relation,
topological relations such as “contains”, “overlaps”, or “touches”. Furthermore,
we show that these relations can be automatically derived from the position and
shape of objects. So, having such relations costs nothing more to the application
designer than the individual description of objects.

A prototype has been implemented, and is used to demonstrate the bene-
fits of our approach for exploring geographical data (Section 5). The navigation
facilities are especially emphasized as they prevent users from having to write
complex queries. Finally, we compare our work with state of the art in Ge-
ographical Information Systems (GIS) (Section 6), and conclude with further
works (Section 7).

2 Relations in Concept Analysis

To our knowledge, three main approaches have been proposed to take into ac-
count arbitrary relations between objects in FCA: Power Context Families, Re-
lational Concept Analysis, and relations in Logical Concept Analysis. Each of
them has its advantages and its drawbacks regarding the intended use. In this
section, we discuss the oportunity of considering a formalism rather than an-
other for the purpose of geographical data exploration in the FCA framework.
In fact, we want to represent spatial relations between geographical objects and
use them as a key for navigation and querying.

Power Context Families (PCF) extend standard FCA and enable to represent
arbitrary n-ary relations between objects of a formal context. A PCF is a vector
of formal contexts (K1, K2, ..., Kn), n ≥ 2 with Ki = (Oi, Ai, Ii), s.t. Oi ⊆ (O1)i.
K1 is the formal context that stores the description of objects and Kn describes
the n-ary relations linking n of those objects. Dealing with n-ary relations may
be interesting when representing complex interactions between objects, as it is
the case in software engineering for instance. But, in the geographical domain,
most of spatial relations that are used in GIS are expressed in terms of binary
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relations. Moreover, a drawback of PCF is that a different lattice is generated for
each context. This means that one cannot use relational properties to navigate
in the traditional concept lattice, i.e. the lattice derived from K1. Yet, mixing
object properties and relational properties in a navigation search is one goal we
want to achieve.

Contrary to PCF, Relational Concept Analysis (RCA) and LCA enables to
describe objects and their relations to each other in the same context, and so
in the same lattice. RCA introduces into FCA abstractions of binary relations
between formal concepts similar to role description (∀r.C,∃r.C) in Description
Logics [5]. These abstractions result from a relational scaling on the object con-
text, and appear in the corresponding concept lattice. However, RCA only deals
with a flat set of relation names, and does not allow a priori to express val-
ued relations or to represent a generalization ordering between relations. When
dealing with spatial relations, this is a drawback as distance relations are val-
ued relations, and topological relations can be organized in a taxonomy. LCA
uses logic to describe objects and relations, as well as to express queries over
those objects. Navigation between concepts is enabled by navigation links that
take the form of ∃r.f , where r denotes the relation and f a description of the
image through r. They can be nested or combined with Boolean operators to
define complex queries. As shown in Section 4, logic enables to express and
reason with valued properties, and also to consider a partial ordering over re-
lational properties. This provides facilities to represent distance or topological
relations. LCA has first been introduced to generalize FCA for the purpose of
information retrieval [2]. In the same way as RCA extends FCA to support
relations in concept analysis, the addition of relations in LCA [3] brings ar-
bitrary relations in information retrieval with LCA. If RCA and LCA do not
share a common goal, the same motivation in handling relations appears in both
approaches.

An advantage of RCA is its ability to effectively build the concept lattice,
which is useful for data-mining tasks. LCA supports the exploration of the con-
cept lattice, where the focus is on the concept and its neighborhood. This is
valuable when exploring large and dense concept lattices. And precisely, our aim
is here information retrieval and among the previous approaches, LCA appears
to be the most appropriate to deal with spatial relations for the purpose of
exploring geographical objects with querying and navigation.

3 Relations in Logical Concept Analysis

In this section, we recall how LCA enables to take into account arbitrary binary
relations between objects. We here limit our presentation to the parts that are
relevant to querying and navigation mechanisms, i.e. we focus on the computa-
tion of extents and navigation links between concepts, and let out the computa-
tion of intents. For readers interested in the details of our approach, a complete
introduction to relations in LCA can be found in [3].
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3.1 Describing Objects and Relations

In LCA, the object context contains the description proper to each object in-
dividually, whereas the relation context describes the binary relations between
objects of the object context.

Definition 1 (object context). An object context is a triple K1 = (O, L1, d1),
where:

– O is a set of objects.
– L1 = (L1, �1) is called a logic. L1 is a language of formulas used to describe

objects, i.e., L1 is composed of all words that can be used to build a formula,
e.g. atoms or connectors. �1 is a partial ordering, called subsumption.

– d1 : O → L1 is a mapping from objects to their description.

The extent of an L1-formula q1 is defined as the set of objects whose description
is subsumed by q1.

Definition 2 (object extent). Let K1 = (O, L1, d1) be an object context
and q1 ∈ L1 be a query. The object extent of q1 in K1 is defined by

ext1(q1) =def {o ∈ O | d1(o) �1 q1}.

Example 1 (The film and artist context). Here we consider the context of Fi-
gure 1 about films and artists. The first row is to be read:

d1(f1) = {title : Pulp F iction , year : 1994 , style : detective}
In this example, L1 = P(A×LV

1 ) is a composite logic, where a1:v1 ∈ A×LV
1 is

called a valued logical property and represents an attribute followed by its value.
A and LV

1 are logics about attributes and values, × enables to define the product
of two logics, and P enables to reason on sets of formulas of a logic. A composite
logic L includes a composite language L and a composite subsumption relation
�. In this example, �1 correponds to a variant of set-theoretic inclusion where
subsumption of values of the same attributes are taken into account. When
querying, this enables to use patterns over values of properties. For instance,
{year : 1994 , style : Detective} �1 {year : >= 1990}. Other examples will be
given in Section 4, but for a detailed explanation of the mechanism of logic
composition, the reader should refer to [8].

The relation context is a kind of logical context, whose objects are pairs of
objects of an object context, and there is an inverse operation for both objects
and formulas.

Definition 3 (relation context). Let K1 = (O, L1, d1) be an object context.
A relation context is a triple K2 = (R, L2, d2), where:

– R is a set of pairs (o1, o2) ∈ O ×O. Each pair (o1, o2) represents an ordered
binary relation from o1 to o2. Two mappings start and end are defined over
R s.t. start((o, o′)) =def o and end((o, o′)) =def o′. Furthermore, R is closed
with an inverse operation −1, i.e. for every pair r ∈ R, start(r−1) = end(r)
and end(r−1) = start(r).
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Object context
type title year style name age sex

f1 Film Pulp Fiction 1994 detective
f2 Film Planet Terror 2007 Action
f3 Film Die Hard 4 2007 Action
f4 Film Death Proof 2007 Action
p1 Artist Bruce Willis 52 M
p2 Artist Robert Rodriguez 39 M
p3 Artist Quentin Tarantino 44 M

Relation context
plays directs

(p1, f1) x
(p1, f2) x
(p1, f3) x
(p2, f2) x x
(p3, f1) x
(p3, f2) x
(p3, f4) x x

Fig. 1. An object context about artists and films, and the corresponding relation con-
text. Relations plays−1 and directs−1 are not explicitly described, but can be automat-
ically infered from the relation context.

– L2 = (L2, �2, .
−1) is a logic of relations. L2 is a language of formulas used

to described relations. �2 is a subsumption relation, and (.−1) denotes an
inverse operation over formulas, considering the inverse of relations s.t. for
every f2, g2 ∈ L2, the following axioms are satisfied:

• (f−1
2 )−1 ≡2 f2 (where f2 ≡2 g2 =def f2 �2 g2 ∧ g2 �2 f2),

• f2 �2 g2 ⇔ g−1
2 �2 f−1

2 .
– d2 : R → L2 is a mapping from pairs of objects to their description expressed

as a logical formula. d2 is compatible with the inverse relation, i.e. ∀r ∈ R,
d2(r−1) ≡2 d2(r)−1.

The extent of an L2-formula q2 over a relation context is the set of pairs of
objects that are related by a relation subsumed by q2.

Definition 4 (relation extent). Let K2 = (R, L2, d2) be a relation context,
and q2 ∈ L2 be a query. The relation extent of the query q2 is defined by

ext2(q2) =def {r ∈ R | d2(r) �2 q2}.

Example 2 (The playing and directing relation context). We now consider the
relation context of Figure 1 indicating who plays in a film and who directs it.
For instance, from this context, we can read:

d2((p3, f1)) = {directs} and d2((f1, p3)) = {directs−1}
d2((p2, f2)) = {plays, directs} and so d2((f2, p2)) = {plays−1, directs−1}

In this case, L2 = P(Ro) where Ro = {plays , plays−1, directs, directs−1} is
a logic of roles. Ro corresponds to the different roles an artist can have in a
film, and vice versa. The subsumption relation �2=⊇. (.−1) maps a set of roles
to the set of its inverse roles. For instance, {plays, directs} �2 {directs} and
{plays}−1 = {plays−1}.

3.2 Querying

In LCA, queries include criteria on both objects and relations. So, for the purpose
of querying and navigation, a new context K = (K1, K2), combining the object
and relation contexts, is considered. In the same way, a combined query language
L is defined for representing expressive queries.
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Definition 5 (combined context and language). Let K1 be an object con-
text, and K2 be a relation context. K = (K1, K2) is the combined context, that
gathers the individual descriptions of objects and their relationships to each oth-
ers. The combined language L is defined as follows:

L →  | ⊥ | L1 | ∃L2.L | ∀L2.L | ¬L | L � L | L � L.

This language is the language of the description logic ALC [9], except atomic
concepts are replaced by object formulas (coming from L1), and atomic roles
are replaced by relation formulas (coming from L2). The previous definitions
of object and relation extents are used as the basis for a combined extent that
computes the extent of a combined query. The semantics behind its definition
is the same as in description logics, except the closed world assumption is used
instead of the open world assumption (e.g., the extent of the negation of a
formula is always the complement of the extent of this formula).

Definition 6 (combined extent). Let K = (K1, K2) be a combined context,
and q ∈ L be a combined query. The combined extent of q is defined by the
recursive set of definitions:

– ext() =def O – ext(¬q) =def O \ ext(q)
– ext(⊥) =def ∅ – ext(q � q′) =def ext(q) ∩ ext(q′)
– ext(q1) =def ext1(q1), where q1 ∈ L1 – ext(q � q′) =def ext(q) ∪ ext(q′)
– ext(∃q2.q) =def {o | ∃r ∈ ext2 (q2 ).(start(r) = o ∧ end(r) ∈ ext(q))}
– ext(∀q2.q) =def {o | ∀r ∈ ext2 (q2 ).(start(r) = o ⇒ end(r) ∈ ext(q))}

The formula ∃q2.q can be understood as having at least one image through rela-
tion q2 that satisfies the formula q. Whereas ∀q2.q can be understood as having
all images through relation q2 that satisfy q.

Definition 7 (query reversal). The query reversal is a query transformation
defined as follows:

rev(q′ � ∃q2.q
′′, ∃q2.q

′′) = q′′ � ∃q−1
2 .q′ with q′, q′′ ∈ L, q2 ∈ L2.

Query reversal allows to traverse backward relations already mentioned in a
query. This allows to change the point of view by considering either one side of a
relation or the other. This is useful because the query ∃q−1

2 (∃q2 .q′) is not always
equivalent to the query q′.

3.3 Navigating

As seen before, query reversal already enables to navigate between queries. More-
over, in order to help users in building queries, a subset of navigation links can
be computed for any query in order to refine it. These navigation links are taken
in a finite vocabulary, whose elements are called features. We assume that the
set of features for an object context K1 (resp. relation context K2) is given
by a user-defined function, called feat1(K1) (resp. feat2(K2)). In most cases,
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feat1(K1) (resp. feat2(K2)) contains at least the subset of L1 (resp. L2) that is
used to describe objects, and the subset of patterns of L1 (resp. L2) that users
have already entered in queries. Those two vocabularies need to be combined in
order to provide a navigation vocabulary over a combined context. It has been
proved [3] that the subset of the combined language useful to build navigation
links can be restricted to:

Definition 8 (combined vocabulary). Let K = (K1, K2) be a combined con-
text. The combined vocabulary is recursively defined as the set of features

feat(K) =def feat1(K1) ∪ {∃x2.x | x2 ∈ feat2(K2), x ∈ feat(K)}.

Features coming from K1 are called object features, whereas those coming from
K2 are called relation features. As a query ∀q2.q can be rewritten as ¬∃q2.¬q,
there is no need for ∀ quantifier in relation features. Given a current query q ∈ L,
only features occuring in the extent of q are presented to users as further query
increments.

Definition 9 (query increments). Let K = (K1, K2) be a combined context,
and a query q ∈ L. A feature x ∈ feat(K) is a query increment if it has a
common instance with the query q, i.e. ext(q) ∩ ext(x) �= ∅.
Object features and relation features can both be used as query refinements,
but relation features can also serve as paths to go through. A relation feature
∃q2.q

′ and may be used go from a query q to q�∃q2.q
′ (refinement) or q′�∃q−1

2 .q
(relation traversal). In order to facilitate the browsing of query increments, these
navigation links are partially ordered according to subsumption. This requires
to define subsumption between features by combining object and relation sub-
sumptions.

Definition 10 (combined subsumption). Let K = (K1, K2) be a combined
context. The combined subsumption � between features in feat(K) is defined by

x � y =def

⎧
⎨

⎩

x �1 y if x, y ∈ L1

x2 �2 y2 ∧ x′ � y′ if x = ∃x2.x
′, y = ∃y2.y

′ (for some x′, y′ ∈ L)
false otherwise

Example 3 (Query refinement, relation traversal and query reversal). We con-
sider the film and artist context, and using the different ways of navigation, we
progressively build a query. We start from the most general query qt0 = .

1. We start by refining qt0 with the object feature Style:Action to select action
films: qt1 =  � style:Action = style:Action.

2. Then, we use the relation feature ∃plays−1.(name:”Quentin Tarantino”) to
refine the query: qt2 = style:Action � ∃plays−1.(name:”Quentin Tarantino”).

3. We choose then to traverse the relation directs−1 using the relation feature
∃directs−1.(). Now qt3 =  � ∃directs−1.(qt2) denotes the artists who
direct an action film in which Quentin Tarantino plays.
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4. We are then able to restrict to artists that are men: qt4 = qt3 � sex:M .
5. Last, we decide to come back to the selected films using the query reversal

on relation direct−1 traversed in qt3. The new query qt5 is equal to:
style:Action � plays−1.(name:”Quentin Tarantino”) � ∃directs−1.(sex:M).

4 LCA Applied to the Geographical Domain

In the sequel, we first present a logic Lg
1 over geometries that enables to describe

and reason about the spatial properties of geographical objects. Then, we give two
examples of spatial relations defined as logical relations using LCA: a Euclidean
distance relation defined as L[m]

2 and a set of topological relations defined as LTopo
2 .

Especially, we describe the logical reasoning over these kinds of spatial relations.

4.1 Spatial Properties

As introduced in Section 3, the object context contains the description of objects
expressed as a conjunction of logical properties. To describe the spatial charac-
teristics of a geographical object, we use a particular logical property, called the
geometry property. The geometry property is a valued property whose name is
geometry and whose value represents the shape of the geographical object. This
value corresponds to a textual description of the geometry, expressed in the Well
Known Text (WKT) format [10] defined by the Open Geospatial Consortium.
Like most other geographical data formats, WKT encompasses the location in
the shape description. In fact, the shape is defined as a sequence of absolute
coordinates determining the spatial border of the geographical object. Examples
of geometry properties are presented in Table 1. The domain of values of the ge-
ometry property is defined by a specialized logic over geometries: Lg

1 = (Lg
1, �g

1).

Table 1. Three simple spatial descriptions illustrating point-wise, linear and area re-
presentation of geographical objects

object geometry property
a subway station (position) geometry:POINT(128.2 135.4)

a subway line geometry:LINESTRING(102.3 99.4, 112.7 110.2, 120.9
123.0, 128.2 135.4, 129.6 155.3, 130.2 169.3, 150.4
168.2)

a building (covered area) geometry:POLYGON(( 110.6 20.3, 110.6 22.1, 111.2 22.1,
111.2 20.3, 110.6 20.3))

Lg
1 is equal to the WKT language, and �g

1 corresponds to the inclusion of
geometries. According to Lg

1, the value g =POLYGON((110.6 ... 20.3)) repre-
sents all geometries that are entirely inside g. For instance, POINT(0.0 0.0)�g

1

POLYGON((-1.0 -1.0,-1.0 1.0,1.0 1.0,1.0 -1.0,-1.0 -1.0)). When querying
for geographical objects, a user has thus the ability to draw an area of inter-
est on a map, and Lg

1 can be used to retrieve all objects located inside the
polygon corresponding to the drawn area. A more detailed explanation of the
use of Lg

1 can be found in [1].
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4.2 Spatial Relations

Spatial relations are implicitly derived from to the geographical description of
objects. The distance relation and the topological relations are function of the
location and the shape of objects.

Distance Relation. Our first example of a spatial relation is the distance
between objects. In the following, we consider only the case where coordinates
of geographical objects are expressed in the same projected coordinate system,
which corresponds to the common practice in GIS. We define the distance dist
between two points as the Euclidean distance. The distance distg between two
geometries g1 and g2 corresponds to the minimun distance between a point of
g1 and a point of g2:

∀g1, g2, distg(g1, g2) = min{dist(p1, p2) | p1 ∈ g1, p2 ∈ g2}

With LCA, distg can be represented with a logic of relations L[m]
2 . Formulas

take the form of valued attributes. The attribute name is distance and its
values correpond to a distance expressed as a real number in the metric system.
Intervals and several metric symbols, e.g. m, cm or km can be used as patterns.
As a distance relation is symmetric, f−1

2 = f2 for all f2 ∈ L
[m]
2 . We give some

examples of formulas from L[m]
2 , their inverse and their ordering w.r.t. �[m]

2 :

distance:100m �[m]
2 distance: (being distant of 100m is being distant)

dist:1km �[m]
2 distance:1000m (1km is the same as 1000m)

distance:1km �[m]
2 distance:in [10m,1km] �[m]

2 distance:>=100m

(distance:1km)−1 ≡[m]
2 distance:1km

The logic L[m]
2 enables queries in the form ∃(distance:<=d) . f1, which selects

all objects within a distance less or equal to d of objects described by f1. This
kind of queries corresponds to a fundamental functionality of GIS. This is a
common way to define a buffered area, i.e. an area determined by both: a set
of objects of interest (f1) and a distance relation (distance:<=d). For instance,
the following query q1 selects fields close to a river:

q1 = type:field � ∃(distance:<=20m) . type:river

Furthermore, distance formulas can be combined and even nested to build
complex queries. For instance consider the query q2 dealing with apartments:

q2 = (apType:T3 � apType:T4) � ∃(distance:<=500m ). type:garden �
∃(distance:<=200m ). (type:busStop � ∃(travel time:<=10min ).
(type:busStop � ∃(distance:<=200m ). place:’IRISA’))

Query q2 selects 3- or 4-rooms apartments that are close (less than 500m) to
a public garden, and that are near (less than 200m) a bus stop from where it
takes less than 10min by bus to reach another bus stop that is close to IRISA
(less than 20m).
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Topological Relations. Topological relations are binary relations describing
the spatial position of an object w.r.t another object. These relations are quali-
tative, they give information about the spatial organisation of objects indepen-
dently from their size, shape or distance. The expression of topological relations
is a domain that has already been widely investigated [7]. Several classifications
have been proposed, some of which based on Galois lattices [11]. In the follow-
ing, we consider a taxonomy of topological relations over regions [12], including
the 8 base relations of the RCC8 model [13] and 7 intermediate relations (see
Figure 2). Each organisation of 2 polygonal geometries in a 2-dimension space
can be expressed as one of the 8 base relations. For the purpose of information
retrieval, this classification has the advantage of being quite simple with only
few relations (15) and understandable intermediate relations.

A B

Disjoint

A B A B

Inside Contains Overlapping

T

A B BA A B B A
B

Inside_s Contains_t Overlapping_s TouchingInside_t Equal Contains_s

Connected

Fig. 2. A taxonomy of spatial relations over 2 regions proposed in [12]. Leafs of the
taxonomy correspond to the 8 base relations of the RCC-8 model.

With LCA, we consider a logic of relations LTopo
2 to handle these topological

relations. Formulas of LTopo
2 are the 15 spatial relations, and the ordering of

�Topo
2 follows the taxonomy of Figure 2. For instance, equal �Topo

2 connected.
The  stands for the general relation being spatially related, which we consider
always true between two geographical objects. Notice also the symmetric prop-
erties between relations: inside−1 = contains, inside t−1 = contains t,
inside s−1 = contains s, and r−1 = r for all other relations. We now suppose
that for each couple of area objects (o1, o2) of the object context, the 2 RCC-8
relations describing the position of o1 w.r.t. o2, and reciprocally, have been added
in the relation context. At the moment, the computation of the relevant relation
is done by an external GIS module. The logic LTopo

2 allows to build queries such
as:

q1 = type:building � ¬ ∃touching . (type:building)
q2 = type:cityBlock � ∀contains . (type:lodging)
q3 = type:road � ∃touching . (place:’my home’) �

∃connected . (type:garden � ∃contains . (type:lake))

The query q1 selects all non-terraced houses, q2, residential areas, and q3, roads
next to my home and leading to a public garden having a lake.
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5 Navigation Based on Spatial Relations

One asset of LCA is to combine querying and navigation in order to make infor-
mation retrieval easier and faster. From any query, navigation is enabled through
a set of navigation links that update the query, and eventually through query
reversal. To facilitate the navigation, query increments are ordered in a navi-
gation tree, according to the subsumption relation (�). In previous works [1],
we have already introduced a graphical interface that enables navigation inside
geographical data, however it was not dealing with relational properties. This
interface is composed of a query box, a map area, and a navigation tree. The
query box recalls the current query, i.e. the navigation context and is manually
editable by the user. By analogy with file systems, the current query is called
the working query (wq). The map area is a cartographic representation of the
explored context and enables to graphically select regions of interest as graphical
query increments. The navigation tree is a visual representation of the partially
ordered set of query increments, which are computed on demand and always rel-
evant w.r.t. wq. In the following, we present a navigation tree allowing relational
navigation through spatial relations. The query box has also been enhanced with
the query reversal transformation. Non nested relation features appearing in wq
are in fact hyperlinks that enable to traverse backward those relations.

To illustrate the use of navigation, we consider the following situation, where
a traveller arrives in an unknown (fictive) city and looks for information about
several points of interest, including lodging, lunch, recreation or transport offers.
To help himself, he relies on a LIS device that let him query and navigate the
city map context using a navigation tree and a query box. The set of objects
O of the context corresponds to the points of interest, the streets and the po-
sition of our traveller. The individual spatial and non-spatial properties of the
objects are described with a logic Lcity

1 = P(A × (LV
1 ∪ Lg

1)). The distance re-
lations and the topological relations the objects share are expressed with the
logic Lcity

2 = P(L[m]
2 ∪LTopo

2 ), allowing that descriptions of relations can include
formulas from either L[m]

2 or LTopo
2 . The description of the city map is presented

in Figure 3a. Topological relations between all pairs of objects have been com-
puted beforehand using a GIS. The disjoint relations, not relevant for this case
of navigation, have not been expressed. However, objects disjoint from others
can be accessed through the ¬∃connected . increment. Distance relations have
also been computed beforehand between each point of interest and its neighbour
streets. For instance, the “Bus stop 1” touches the “Street A”, and the “Bar 2“
is within a distance of 10 meters of “Street A”.

5.1 The Navigation Tree

The navigation tree related to the citymap context is presented in Figure 3b.
It displays information about the type of geographical objects (type), their
name (place name), and about the spatial relations they share (distance and
spatially related for topological relations). Query increments, also called
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Fig. 3. Map of a city unfamiliar to our traveller (on the left), and the corresponding
navigation tree (on the right)

features, may be of two kinds (see Section 3.3). Object features are proper-
ties shared by at least one object of wq. For instance, in the citymap navi-
gation tree, there is one lodging object. Relation features denote a relation
between some objects of the current query, with at least one other object of
the context. Relation features correspond to ∃x2.x navigation links, but are ex-
pressed in the navigation tree with direction symbols > and <. For instance, in
the citymap navigation tree, 6 objects are spatially related to another object.
The feature spatially related>ALL corresponds to ∃spatially related., and
spatially related<ALL corresponds to ∃spatially related−1.. In the tree of
Figure 4, both features distance:>ALL and distance:<ALL are represented,
altougth they are redundant because the distance relation is symmetric. This
is also true for some topological relations. In the future, a special handling of
symmetric relations is planed.

Each node of the tree represents a feature which can be used to change wq.
When a node is expanded, this entails dynamically the computation of features
that are specializations of the feature of this node. Then, the new features appear
as its children in the tree. For instance, in Figure 3b, the taxonomy of points of
interest is visible under the feature type, and distance intervals are visible under
the distance:<ALL feature. The root of the tree is ALL, i.e., the most general
formula. Each node of the tree is rendered with an icon, a label, two numbers,
and possibly an arrow. The label is the formula representing the feature. The
style of the label is informative: underlined labels correspond to formulas shared
by all the objects in wq, whereas blue labels indicate properties that discriminate
them. The two numbers indicate a proportion: the count of objects in wq that
the feature leads to, i.e. the support, out of the count total of objects sharing the
feature. In Figure 3b, the counts next to the feature distance:[0.0,50.0]<ALL
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are both equal to 16, i.e. all geographical objects of the citymap context are
within 50 meters of another object. Three actions are possible in the tree: (1)
displaying more (resp. less) navigation links, i.e. expanding (resp. collapsing) a
node by acting on its icon; (2) refining wq by selecting a label; (3) traversing a
relation by selecting the arrow next to the node.

5.2 Example of Navigation

Just suppose that our traveller has left his luggage at the hotel and wants to
have some recreation before having lunch. He looks at his LIS device, provides it
with a new geographical object corresponding to its position (which we denote
here). This entails the addition of distance relations (already displayed in the
tree of Figure 3b) between the object here and the other points of interest of the
context; the distances are computed on the basis of the shortest path, following
streets. He then queries the system with:

wq = recreation

The LIS system provides him with the updated navigation tree of Figure 4a.
The taxonomy of geographical objects (under feature type) has been reduced
and now only contains the recreation feature. By expanding this feature, he
can see 2 sub-features indicating 2 types of available recreation: cinema and
public garden. The first count of the feature recreation indicates that only 3
geographical objects correspond to recreational areas. The other features of the
tree have also been updated. For instance, we can see that 2 recreation places
are connected to “Street A”.

Prefering being outside, our traveller decides to restrict his choice to public
gardens not too close to his actual position. So, in the tree, he selects the feature
public garden, and manually modify wq so as to select public gardens located
at more than 350 meters:

wq = public garden � ∃(distance :>= 350.0m).here

The navigation tree has been updated anew, and indicates him that two public
gardens satisfy the query. By looking at the navigation tree, he can see the query
increment connected>ALL denoting that some information about the topologi-
cal organization of these gardens is available. Wanting more details about the
environnement of the gardens, he traverses the connected relation by selecting
the arrow next to the feature. This updates wq to:

wq = ∃connected−1.(public garden � ∃(distance :>= 350.0m).here)

The navigation tree now displays information concerning 3 geographical objects
topologically linked with a public garden (see Figure 4b). By looking at the
feature type, he can see that two of these objects are streets leading to a garden,
and that the other one belongs to the miscellaneous category. Just by selecting
the misc feature and looking at the feature place name, our traveller can see
that it corresponds to a lake which is in fact inside a public garden. To retrieve
the corresponding garden, he then just has to follow backward the connected
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a b

Fig. 4. The citymap navigation tree at two different steps. In tree a, wq = recreation,
in tree b, wq = ∃connected−1 .(public garden � ∃(distance:>=350.0m).here).

relation (query reversal) by clicking on connected−1 in the query box. Then wq
becomes:

wq = public garden � ∃(distance :>= 350.0m).here � ∃connected.(misc)

6 Benefits of Using LCA to Query Geographical Data

Regarding data organisation and retrieval, GIS have been widely influenced by
Relational Database Management Systems (RDBMS) [14]. Most of the time,
geographical information is structured into thematic layers, i.e., a layer for the
streets, another for the points of interest, etc. Recently, XML-based formats for
geographical data [15] allow to consider collections of heterogeneous geographi-
cal objects. But in every instance, retrieving data is done using querying inter-
faces and querying languages (XQuery-like or SQL-like) that integrate spatial
predicates.

Our proposal of using LCA to manage geographical data not only enables to
build queries similar to traditional GIS queries, it also offers a flexible organi-
zation of the data. Our data model is centered on the geographical object and
enables to consider each collection of objects that share a common description
expressed by a query q as a kind of flexible layer that can serve as a basis for
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further processing. In GIS, traditionally, querying for data disseminated into
several collections implies making as many sub-queries as collections and merg-
ing the results. This service is automatically provided by LCA but requires
the descriptions of similar objects to be comparable. Concerning the query-
ing capabilities, firstly, the querying language available in LCA (see Section 4),
combined with the spatial logics of distance relation and topological relations,
already enables to express most of the queries traditionally used in a GIS,
as shown in Section 4.2. For instance, concerning spatial queries, the formula
∃(distance:<=d).q′ enables to consider buffered areas of radius d around geo-
graphical objects described by q′. Moreover, like with GIS traditional languages,
these buffered areas can be combined using Boolean operators and nested in
other spatial predicates. Secondly, the expressivity of LCA relies for one part
on the sub-logics used to reason on object descriptions. But once a new logic
has been designed for a particular purpose, e.g. comparing areas derived from
geometrical descriptions, it can be added to the system without reconsidering
the whole theory. This makes the LCA querying language powerful as it can be
easily extended, and customized to handle particular data. Currently, compared
to SQL or XQuery, LCA lacks the ability to express agregates, although this is
an interesting field we plan to investigate.

An advantage of LCA compared to traditional GIS is the navigation tree.
Even in dedicated map search tools such as the proximity business search of
Google Maps , the results are always delivered as a flat textual list with bullets
on a map, where no indication is given on the structure of the answer and
on how to refine it. In comparison, the navigation tree offers at least three
assets. First, the navigation links give at a glance a summarized description of
the currently selected dataset. Then, these navigation links provide a querying
vocabulary which allows to build a query from scratch even with no knowledge
about the data. Last but not least, the navigation links enable to refine the
current query in a relevant way, i.e., ensuring the answer will be reduced but
not empty. Giving aid in the building of queries is also a contribition of the
VISCO system [12]. In VISCO, description logics are used to query a spatial
database in a visual way. Like our prototype, VISCO enables to represent and to
reason about spatial properties, e.g. area or perimeter, and topoligical relations of
geographical objects. In addition to querying capabities, VISCO also assists the
user with query completion based on terminological default reasoning. However,
contrary to our proposal, augmented queries may lead to empty answers because
it does not take into account the content, but only the logic.

LCA also brings a new kind of navigation, the relational navigation. Consid-
ering a set of objects O that are instances of a query q and in relation r with
other objects O′ described by f , i.e. the link ∃r.f is visible in the tree, one
can directly jump to the related objects O′. In the geographical domain, this
provides facilities when querying data organized in several thematic collections.
Compared to traditional GIS practices, this kind of navigation prevents the user
from building sub-queries corresponding to search criteria depending on several
layers and then combining or nesting these sub-queries in the right way. With
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the relational navigation, the search process can be fully incremental, and does
not impose any order on the building of a query.

7 Conclusion

In this paper, we first show that LCA is a framework that enables to easily model
spatial relations between geographical objects. Valued spatial relations such as
distance can be expressed in an intuitive manner thanks to the expressivity of
logics. Furthermore, thanks to the partial ordering between logical relations,
LCA naturally integrates taxonomies of relations, such as topological relations.
Then, we present an original way to explore geographical data, using a navigation
based on spatial and non-spatial properties of objects, as well as on the spatial
relations between geographical objects. Especially, we illustrate the benefits of
this paradigm of geographical data exploration provided by LCA, compared to
traditonal GIS querying capabilities.

In the future, we plan to make the update of relations automatic and incre-
mental when the description of geographical objects changes, e.g. their position.
We also plan to work on a graphical representation of relation features in order
to enhance the readibility of the navigation tree and to assist the user in the
building of queries involving spatial relations.
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12. Wessel, M., Haarslev, V., Möller, R.: Visual spatial query languages: A semantics
using description logic. In: Diagrammatic Representation and Reasoning, Springer,
Heidelberg (2000)

13. Randell, D.A., Cui, Z., Cohn, A.: A Spatial Logic Based on Regions and Connec-
tion. In: Nebel, B., Rich, C., Swartout, W. (eds.) KR 1992, pp. 165–176. Morgan
Kaufmann, San Francisco (1992)

14. Laurini, R., Thompson, D.: Fundamentals of Spatial Information Systems. Aca-
demic Press Limited, London (1992)

15. Cox, S., et al.: Geography Markup Language (GML) Encoding Spec. Open Geospa-
tial Consortium (OGC) (2004)



Analysis of Social Communities with Iceberg

and Stability-Based Concept Lattices

Nicolas Jay1,2, François Kohler2, and Amedeo Napoli1

1 Laboratoire Lorrain de Recherche en Informatique et ses Applications,
Campus Scientifique - BP 239 - 54506 Vandoeuvre-lès-Nancy Cedex, France

jay@loria.fr
http://www.loria.fr/equipes/orpailleur

2 Laboratoire SPI-EAO,
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Abstract. In this paper, we presents a research work based on formal
concept analysis and interest measures associated with formal concepts.
This work focuses on the ability of concept lattices to discover and rep-
resent special groups of individuals, called social communities. Concept
lattices are very useful for the task of knowledge discovery in databases,
but they are hard to analyze when their size become too large. We rely
on concept stability and support measures to reduce the size of large con-
cept lattices. We propose an example from real medical use cases and we
discuss the meaning and the interest of concept stability for extracting
and explaining social communities within a healthcare network.

1 Introduction

Knowledge Discovery in Databases (KDD) is an iterative and interactive process
for identifying valid, novel, and potentially useful patterns in data [1]. It is usually
divided into three main steps: data preparation, data mining, and interpretation
of the extracted units. Data mining is often considered as the central step in the
KDD process. However, interpretation of data-mining results is also an important
step within the KDD process. Indeed, one of the the success keys in KDD practice
relies on the ability of easily producing units understandable as knowledge units.
One way of achieving such a goal is to provide an adapted organization and
representation of the extracted units, especially when the KDD system has to
be used by novice users.

In parallel, Formal Concept Analysis (FCA) is a theory of data analysis in-
troduced in [2], that is tightly connected with KDD [3, 4], particularly regarding
the search of frequent itemsets and the extraction of association rules [5]. Many
algorithms relying on FCA central property of closure have been proposed to
extract frequent closed itemsets: e.g. CLOSE [6], CLOSET [7], CHARM [8], TI-
TANIC [9], and ZART [10]. The set of frequent closed itemsets may be used to
determine the set of all frequent itemsets: closed itemsets are a loss less repre-
sentation of frequent itemsets, while the set of closed itemsets can be orders of
magnitude smaller than the set of all frequent itemsets.

R. Medina and S. Obiedkov (Eds.): ICFCA 2008, LNAI 4933, pp. 258–272, 2008.
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FCA organizes information into a concept lattice representing inherent struc-
tures existing in data. A concept lattice can be visualized for analysis using
graphical tools, e.g. TOSCANA [11], GALICIA [12]. FCA forms also the basis
of a knowledge processing paradigm known as “Conceptual Landscapes” [13].
Furthermore, Stumme [9] has introduced the so-called iceberg lattices, which
are concept lattices of frequent closed itemsets. Iceberg lattices serve as a sup-
port for visualization of association rules mined in large database. They can help
analysts in selecting interesting patterns and organizing these patterns into un-
derstandable and reusable knowledge units. However, iceberg lattices may hide
non frequent but still relevant concepts.

Following the idea of compact, reduced (loss less), and concise representa-
tion of extracted units (i.e. itemsets, association rules, or concepts), a number
of numerical measures used for pruning itemsets, association rules, and in a
certain sense concepts, have been proposed [14]. In this way, Kuznetsov has in-
troduced stability as a new interest measure for concepts [15, 16]. Stability has
been successfully used for pruning concept lattices, e.g. in the field of social net-
works [17–19]. Accordingly, in this article, we address the problem of exploring
“social communities”. By “social communities”, we intend sets of agents or orga-
nizations whose members are linked by a common interest or objective [20]. One
of our goals is to study the basis and to design a decision support system for as-
sisting experts identifying social communities. The selection, organization, and
discrimination of relevant units of knowledge, help to understand how agents
interact in a social community and how they gather on specific topics. More-
over, we show in this paper that combining concept frequency together with
concept stability provides a very efficient means for discovering and analyzing
social communities.

The paper is organized as follows. Following the present first section, the
second section introduces the definitions and the properties of FCA, of support
and stability measures. The third section presents a qualitative discussion on
stability and shows how stability enlighten concept with a high internal cohesion,
i.e. stable and without exceptional individuals. Then, the fourth section gives
details on an example of social community discovery within a healthcare network.
A discussion on the example and on the knowledge units that can be extracted
is proposed and precedes the conclusion of the paper.

2 Support and Stability: Interest Measures of Formal
Concepts

2.1 Formal Concept Analysis

We describe here the FCA basics. FCA starts with a formal context K = (G, M, I)
where G is a set of objects, M is a set of attributes, and the binary relation
I = G × M specifies which objects have which attributes. Two operators, both
denoted by ′, connect the power sets of objects 2G and attributes 2M as follows:

′ : 2G → 2M, X′ = {m ∈ M|∀g ∈ X, gIm}



260 N. Jay, F. Kohler, and A. Napoli

The operator ′ is dually defined on attributes. The pair of ′ operators induces
a Galois connection between 2G and 2M. The composition operators ′′ are closure
operators: they are idempotent, extensive and monotonous. For any A ⊆ G and
B ⊆ M, A′′ and B′′ are closed sets whenever A = A′′ and B = B′′.

A formal concept of the context K = (G, M, I) is a pair (A, B) ⊆ G × M where
A′ = B and B′ = A. A is called the extent and B is called the intent. A concept
(A1, B1) is a subconcept of a concept (A2, B2) if A1 ⊆ A2 (which is equivalent to
B2 ⊆ B1) and we write (A1, B1) ≤ (A2, B2). The set B of all concepts of a formal
context K together with the partial order relation ≤ forms a lattice and is called
concept lattice of K.

2.2 Iceberg Concept Lattices

This paragraph is based on [9] and introduces basics of iceberg lattices.

Definition 1. Let B ⊆ M. The support count of the attribute set B in K is

σ(B) =
|B′|
|G| (1)

Let minsupp be a threshold ∈ [0, 1], then B is said to be a frequent itemset if
σ(B) � minsupp.

A concept is called frequent concept if its intent is frequent.

Definition 2. The set of all frequent concepts of a context K is called iceberg
lattice of the context K.

The support function is monotonously decreasing: given two attribute sets B1
and B2, B1 ⊆ B2 ⇒ σ(B1) ≥ σ(B2). Thus an iceberg lattice is an order filter of the
whole concept lattice and in general only a join-semi-lattice. Meanwhile, adding
a bottom element makes it a lattice again.

Iceberg Lattices can be used to discover and visualize association rules. Within
a formal context K = (G, M, I), the task of mining association rules is to determine
all pairs X → Y of M such that σ(X → Y) = σ(X ∪ Y) � minsupp, and the confidence
conf(X → Y) = σ(X∪Y)

σ(X) is above a given threshold minconf ∈ [0, 1].
Mining associations rules with FCA has two major advantages [21]. First,

frequent closed itemsets are sufficient to deduce all frequent itemsets. Thus,
algorithms can benefit from this property to reduce the search space. Second,
iceberg lattices offer a reduced and lossless representation of association rules.
They allow to directly read Luxenbourger basis for approximate association rules
[22] from a line diagram.

2.3 Stability

Stability has been introduced (probably for the first time) in [15] and then
revisited [16, 19]. Here, we rely on the definition given in [19].
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Definition 3. Let (A, B) a formal concept of B(K). Stability of (A, B) is

γ(A, B) =
|{C ⊆ A|C′ = A′ = B}|

2|A|
(2)

The stability index of a concept indicates how much the concept intent depends
on particular objects of the extent. Given a concept (A, B), the stability index
measures the number of elements of G that are in the same equivalence class of
A, where an equivalence class is defined as follows.

Definition 4. Let X ⊆ G, we denote by 〈X〉 the equivalence class of X where:

〈X〉 = {Y ⊆ G|Y′ = X′} (3)

Note that when X is closed, any Y in 〈X〉 is a subset of X. Thus, considering a
formal concept (A, B), definition 3 can be rewritten as:

γ(A, B) =
|〈A〉|
2|A| (4)

Then, the larger the equivalence class of an extent is (wrt to extent size), the
more stable the concept is. The idea behind stability is that a stable concept
is likely to have a real world interpretation even if the description of some its
objects (i.e. elements in the extent) is “noisy”. Figure 1 shows an example of
stability in a concept lattice. Each concept is labelled by its extent, intent and
stability. For example, for the concept ({1, 5, 6}, {a}), we have:

∅′ = {a, b, c, d} = {a}
{1}′ = {a}
{5}′ = {a}

{6}′ = {a, b, c} = {a}
{1, 5}′ = {a}
{1, 6}′ = {a}
{5, 6}′ = {a}

{1, 5, 6}′ = {a}

Thus γ({1, 5, 6}, {a}) = 6
8 = 0.75. It can be noticed that stability is (by def-

inition) always between 0 and 1. It can be still noticed that γ(⊥) = 1. This is
always true, since for any subset X from the extent of ⊥, X′ is included in the
intent of ⊥.

Computing stability has been shown to be a #P-complete problem [16]. Mean-
while, once the concept lattice has been computed, a bottom-up traversal algo-
rithm can efficiently compute stability [18]. Actually, a concept stability depends
on the stability of its subconcepts. This can be shown as follows:
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Fig. 1. Stability example

Proposition 1. Let (A, B) a formal concept of B(K).

γ(A, B) = 1 −
∑

X⊂A,X=X′′

γ(X, X′)2|X|−|A| (5)

Proof. For a formal concept (A, B), from (4), we have:

γ(A,B) =
|〈A〉|
2|A|

Let IA be the set of subintents of A: IA = {X ⊆ A|X = X′′}. The set of equivalent
classes {〈X〉|X ∈ IA} forms a partition of 2A. Thus |2A| =

∑
X∈IA|〈X〉|, which gives:

|〈A〉| = |2A| −
∑

X∈IA,X 	=A

|〈X〉|

Dividing by |2A| we obtain:

|〈A〉|
|2A| = 1 −

∑

X∈IA,X 	=A

|〈X〉|
|2A|

γ(A,B) = 1 −
∑

X⊂A,X=X′′

γ(X, X′)2|X|−|A|

3 A Qualitative Analysis of Stability

3.1 Stability and Cohesion

As stated in [19], a concept is stable if its intent does not depend much Âon
each particular object of the extent. Stability is aimed at measuring how much a
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concept extent depends on some of its individual members. This may be useful
in analyzing a dataset with a concept lattice, having a special attention to social
communities. Here, a social community can be thought as a group of agents
–human, software, or resource agents– sharing the same interests, or ideas, or
needs [17]. For example, patients visiting the same hospitals with similar medi-
cal problems can be identified as a special social community. In the associated
formal context, objects correspond to patients and hospital stays correspond to
attributes (see hereafter). Always following the line of [19], an actual community
has to be “internally cohesive” enough: a stable concept continues to be a con-
cept even if a few members stop being members. This means also that a stable
concept is resistant to noise and will not collapse when some members will be
removed from its extent.

In this way, a stable concept is a meaningful concept, in the sense that it
covers a group of objects, that considered together, have a high internal cohesion.
The most stable concepts determine the most interesting groups of objects, that
constitute their extents.

3.2 Stable Concepts Are of High Interest

FCA provides a powerful framework for identifying social communities [17, 23,
24]. Relations between agents and common interests can be modeled within a
formal context. The associated concept lattice will allow to discover and identify
which agents do share common interests and what are these interests. How-
ever, as the size of a formal context increases, the number of formal concepts
in the lattice may grow dramatically. In this case, interest measures such as
stability and support can reduce the complexity of the analysis of the con-
cept lattice. Filtering concepts by support relies on the assumption that use-
ful knowledge is represented by frequent patterns. But, this is not always true
as pointed out in studies on rare itemsets, as in e.g. in [25], where it is shown
that association rules with a low support but a high confidence may be of high
interest.

Stability gives an alternative point of view on formal concepts. It indicates
the probability of preserving a concept intent while removing some objects of
its extent. Considering social communities, stability helps to identify groups of
commons interest that dot not entirely depend on some specific agents. As sta-
bility is somewhat independent from support, it can be used to discriminate
low-support concepts and detect small communities of strongly related agents.
Moreover, stability also detects frequent concepts only depending on a small
number of objects. For example, considering a lattice composed of the two fol-
lowing concepts C1 = ({g1, ..., gn−1, gn}, {m1}) and C2 = ({g1, ..., gn−1}, {m1, m2})
with n high, then it can be noticed that C1 depends solely on the object gn.
Although C1 and C2 have both a support close to 1, stability of C2 is 1 while
stability of C1 is 1

2 . In terms of social communities, the group of individuals
{g1, ..., gn} has not a sufficient “internal cohesion” or has not a “real existence”.

Hence, stability, together with support, are a convenient means for identifying
two types of concepts:
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– rare stable concepts : concepts with a low support and a high stability,
– frequent unstable concepts : concepts with a high support and low stability.

In section 4, this point of view is discussed and illustrated within a real-world
application aimed at detecting communities of patients, i.e. groups of patients
being treated in the same groups of hospitals.

3.3 Stable Concepts Are Monothetic Rather Than Polythetic

As introduced above, stability can also be linked with exceptions, and, further-
more, with the so-called monothetic and polythetic characters of a class of indi-
viduals [26–28]. When building a concept lattice and analyzing groups of indi-
viduals through the extents of concepts, one problem is to recognize and explain
exceptions. A subsequent question is to understand whether exceptions are linked
to monothetic or polythetic classes.

A class of individuals C is said to be monothetic if and only if there exists a set
of attributes Att that determines the membership of an individual to the class
C (Att is a set of necessary and sufficient membership conditions). By contrast,
given a set of attributes Att = {a1, ..., an}, a class of individuals C is said to be
polythetic if and only if:

– Every object that is an instance of the class C has an “important” –not
necessarily fixed– number of attributes of Att.

– Every attribute of Att belongs to an “important” –not necessarily fixed–
number of instances of C.

– There is not necessarily an attribute of Att belonging to every instance of C.

Relying on the fact that a stable concept has a high “internal cohesion”, is
resistant to noise, and does not collapse when some members stop being mem-
bers of its extent, the more a concept is stable, the more it does not represent
exceptional individuals, and, accordingly, the more the concept is able to rep-
resent cohesive groups of individuals, such as social communities. This means
that stable concepts are rather monothetic and that unstable concepts are rather
“exceptional” or polythetic, i.e. they include some exceptional character, shared
by only a few individuals. For illustrating this view, let us consider the following
example.

A B C D E

1 x x x x
2 x x
3 x x x x
4 x x x
5 x x x x

Here, attribute D can be considered as a “necessary and sufficient condition”
for the membership of an individual to the class including individual 1. Indeed,
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the concept lattice includes the concept (A, B) = (1, abde). However, this concept
has a very low stability ( 4

16 ) and also a low support for its intent ( 15 when
abde is considered as an itemset). This is in agreement with the view that a
stable concept appears to be monothetic while an unstable concept tends to be
polythetic.

4 Social Communities in a Regional Healthcare System

4.1 Motivations

Healthcare management and planning play a key role for improving the over-
all health level of the population. From a population point of view, even the
best and state-of-the-art therapy is not effective if it cannot be delivered in the
right conditions. Actually, many determinants influence the effective delivery of
healthcare services: availability of trained personnel, availability of equipments,
security constraints, costs, proximity. . . All of these should meet economics, de-
mographics, and epidemiological needs in a given area. This issue is especially
acute in the field of cancer care where many institutions and professionals must
cooperate to deliver high level, long term, and costly care. Therefore, it is crucial
for healthcare managers and decisions makers to be assisted by decision support
systems that give strategic insights about the intrinsic behavior of the healthcare
system.

On the one hand, healthcare systems can be considered as ”data rich” as they
produce massive amounts of data such as electronic medical records, clinical
trial data, hospital records, administrative data, and so on. On the other hand,
they can be regarded as ”knowledge poor” as these data are rarely embedded
into a strategic decision-support resource [29]. In France, the PMSI database
is a national information system used to describe hospital activity with both
an economical and medical point of view. In a previous work, we used this
system together with iceberg lattices to discover how several institutions organize
themselves into an implicit network to provide coordinated care at a regional
level [30]. Our method has been used in real world by healthcare managers. It
appeared that support based pruning had some limits, for example in analysing
small institutions interactions.

4.2 The Difficulty of Choosing the Good Support Threshold

In this section we present an example of an iceberg lattice showing cooperations
between hospitals in the field of cancer. We then discuss the choice of minsupp
by studying concept support distribution. In our approach, we build a context
in which objects are patients suffering from cancer and attributes are hospitals.
A patient and a hospital are related if the hospital has delivered cancer care to
this patient. In our experiment, the resulting context has 6036 patients and 170
hospitals. While the whole concept lattice holds 865 concepts, an iceberg lattice
built with a minsupp of 0.0033 (20 patients) gives 93 frequent concepts. A small
excerpt of this iceberg is shown in figure 2.
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Fig. 2. Iceberg of cancer treatment cooperations

For the sake of clarity, ⊥ was removed. Although its right and leftmost parts
are not drawn, the iceberg lattice is much more wide than deep because the
context is sparse and data are poorly correlated. This means that cooperations
are most of the time tightly partitioned, and that patients are rarely hospitalized
in more than two hospitals. The intent of co-atoms, i.e. immediate descendants
of �, is always a singleton, indicating that a hospital never shares all of its
patients with another one, or if it is so, less than 20 patients are involved in the
interaction. The intent of atoms, i.e. the immediate ascendant of ⊥, is always
a pair. The extent of atoms gives an idea of the strength of the cooperation
between the two hospitals lying in the intent: the larger is the cardinal of the
extent, the higher is the strength of the cooperation (i.e. the more patients
are shared between the two hospitals). The examination of the iceberg brings
different types of knowledge:

– some concepts that are both atoms and co-atoms (for example : CL-SELI-
THIO). They represent institutions that share a few patients with others. This
is that either they treat a few patients, or they work in a relative autonomy,
or cooperation is split with many other hospitals.

– other concepts have at least a sub-concept (different from ⊥). They repre-
sent a hospital receiving a significant number of patients, and having col-
laborations with at least another establishment. For example MAT-REG and
CLCC-AV-VAN share 28 patients.

– The concept representing the CLCC-AV-VAN hospital has a high support and
many sub-concepts. This hospital is a specialized anti-cancer center. It em-
ploys highly skilled and specialized personnel. Treatments given there rely on
state-of-art technology. Furthermore, It actively participates in anti-cancer
research programs and thus can be considered as a reference institution.

The choice of the minimum support strongly influences the interpretation of
the iceberg. It must be sufficiently low to convey meaningful knowledge and
sufficiently high to keep this knowledge readable for a human expert. Here, the
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Table 1. Concept support count and intent size

��������������Number of patients
Intent size

0 1 2 3 > 4

< 10 0 40 285 297 76
[10, 20[ 0 13 52 7 0
[20, 30[ 0 10 20 0 0
[30, 40[ 0 6 2 0 0
> 40 1 34 20 0 0

whole lattice holds 865 concepts. Table 1 shows the distribution of their support
according to the size of their intent. By choosing a minsupp of corresponding to
20 patients, we see we can miss interesting knowledge:

– 13 hospitals treat at least 10 patients,
– 52 cooperations of two hospitals involve at least 10 patients,
– 7 concepts represent cooperations between three hospitals and involve at

least 10 patients.

In our case, support is a weak mean for discriminating ”not-so-frequent” con-
cepts. Some concepts not appearing in the iceberg may be of interest for different
reasons:

– They illustrate a cooperation of one hospital sharing almost all of its patients
with another one.

– They concern a hospital treating few patients but not sharing them with any
other one.

– They concern a 3-hospitals interaction.

Lowering the support threshold can let these concepts appear in the ice-
berg, but at the expense of readability. Moreover support measure is not specific
enough to discriminate concepts with the above characteristics.

4.3 Stability Analysis

In this section, we study stability of concepts within the whole concept lattice.
Figure 3 shows the histogram of concept stability.

Most of the concepts hold only one object in their extent. As ⊥ extent is empty,
they have a stability of 0.5. The next important group consists of concepts having
stability very close to 1. It corresponds generally to the most frequent concepts.
Indeed, 93% of the concepts having support greater than 10 have stability greater
than 0.99. Figure 4 is a scatter-plot of stability and support, also featuring intent
size.

Values are presented on a log-scale for better visualization of both support
and stability ranges. Moreover, we prefer to use the stability odds defined as
follows:
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Fig. 3. Concept stability histogram

Fig. 4. Concept stability and support

Definition 5. Given a concept (A, B) = ⊥, we call stability odds of (A, B):

oγ(A, B) =
γ(A, B)

1 − γ(A, B)
(6)

Stability odds are the ratio between the number of subsets of an extent A which
belong to the equivalence class of A, and of those which do not.

Stability odds illustrate more clearly the distribution of stability for values close
to 1 and show that stability has a better discriminant power than support. The
whole set of concepts has 87 distinct support values and 152 distinct stability
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values. For concept having support between 10 and 19, we observe 57 distinct
stability values. Figure 4 displays thresholds for the 10% most frequent concepts
and 10% most stable concepts. In the next sections we discuss the differences
between those two thresholds.

4.4 Frequent Unstable Concepts

The upper left quarter of figure 4 shows the 9 concepts having support greater
than the 10% most frequent threshold and stability less than the 10% most stable
threshold, i.e. frequent unstable concepts. They represent institutions playing a
significant role in cancer care as secondary or tertiary care1 centers. They share
most of their patients with other hospitals. This gives rise to cooperations of 2
kinds.

Figure 5 shows the order ideals of two frequent unstable concepts. Two hospi-
tals have tight interaction each with another tertiary care center, i.e. MAT-REG-
NANCY with CRLCC-AV-VAN, CL-ARCENCIEL with CH-EPINAL. These two institu-
tions are secondary care centers usually delivering surgery and referring patients
to a tertiary care center for radiotherapy. Their activity can be almost entirely
explained by an exclusive cooperation. This induces a form of dependency with
the tertiary care center. Patient not concerned by the cooperation can be con-
sidered as exceptions, i.e. patients not following the usual care pathway for some
reason (for example because they suffer from a very specific pathology). After
pruning according to stability, only the concepts in grey on figure 5 will remain.

One center, as shown on Figure 6, is a highly specialized anti-cancer insti-
tution. IGR-PARIS is an international well-known anti-cancer center located in
Paris. Many Lorraine local hospitals refer patients to IGR for rare tumors. If we
apply stability pruning here, the whole sub-lattice will disappear, which may be
desirable for readability. Meanwhile, its suggests that searching for this type of
unstable frequent concept can also be an interesting knowledge mining task.

4.5 Rare Stable Concepts

Three concepts are located in the right lower corner of figure 4.
Two have an intent of size 2 and illustrate thus cooperations between two

hospitals sharing 18 patients. These cooperations differ from others of the same
support in that they are not split themselves in cooperations involving a third
institution. Thus, similarity of concerned patients is entirely explained by those
cooperations. The last concept has a size 3 intent and illustrates the cooperation
between three large specialized hospitals located in the same city of Nancy. This
is the most frequent and most stable concept of that type.

Stability allows to distinguish rare concepts that cannot be separated from
others by support. Rare stable concepts differ from other rare concepts in that
their attributes suffice to explain the similarity of their objects.
1 Secondary care is delivered by a broadly skilled specialist (e.g. a general surgeon, a

general internist, or an obstetrician). Tertiary care is provided by a sub-specialist(e.g.
an orthopedic surgeon, a neurologist, or neonatologist).
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Fig. 5. Frequent unstable concepts: exclusive cooperations

Fig. 6. Frequent unstable concepts : IGR-PARIS as a national referred care center

5 Synthesis

Our system is used in real world by healthcare managers. First, at the individ-
ual level, it helps healthcare professionals to assess their activity in the regional
landscape. While physicians are able to cite the names of people they are used
to cooperate with, they cannot measure the strength of these cooperations. And
it is even harder for hospital managers to count patients shared with other insti-
tutions due to the gaps and lacks of adapted processes in information systems.
Second, at the regional level, it provides for the administrative staff a decision
support to reorganize care resources according to the implicit behavior of the
healthcare system. Actually, French law establishes activity thresholds in the
field of cancer: e.g. an hospital must treat at least 30 patients a year to be au-
thorized for digestive cancer surgery. Our system has allowed to enlighten and
accordingly to promote cooperations between institutions that could not reach
the thresholds alone. It has also demonstrated how administrative decisions could
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impact the social healthcare network, given the existence of many dependencies
between structures.

6 Conclusion

Our main objective is to build a system allowing for visualization of a social
healthcare network in the field of cancer care. This system is used today by
healthcare managers. Things must be kept simple while conveying enough infor-
mation for assisting strategic decisions. The use of concept interest measures has
a strong impact both on readability and semantics of discovered knowledge. To-
gether with support, stability can successfully identify two kind of concepts: fre-
quent unstable concepts and rare stable concepts. In our experiment, the formal
context is sparse and we need to mine concepts with very low support. Stability
brings additional knowledge that helps to discover interesting rare concepts that
can not be discriminated by support. We believe that it could have significant
implications in the field of rare itemsets mining [25]. Furthermore, stability en-
hances lattice visualization when pruning frequent unstable concepts. Besides,
frequent unstable concepts may also be a subject of interest.
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Abstract. Recent work in fault localization crosschecks traces of cor-
rect and failing execution traces. The implicit underlying technique is to
search for association rules which indicate that executing a particular
source line will cause the whole execution to fail. This technique, how-
ever, has limitations. In this article, we first propose to consider more
expressive association rules where several lines imply failure. We then
propose to use Formal Concept Analysis (FCA) to analyze the resulting
numerous rules in order to improve the readability of the information
contained in the rules. The main contribution of this article is to show
that applying two data mining techniques, association rules and FCA,
produces better results than existing fault localization techniques.

1 Introduction

The execution of a program in a testing environment generates a set of data
about the execution, called a trace of the execution. Traces allow the program
to be monitored and permit the program to be debugged when some executions
fail, namely produce unexpected results. A trace can contain different kinds of
information, for example the executed lines, and the verdict of the execution
(FAIL or PASS ). Fault localization often investigates the contents of traces to
find the reasons of failures. There exist several approaches to crosscheck traces.
Some are based on the differences between a passed execution and a failed execu-
tion [RR03, CZ05]. Others use statistical indicators in order to rank lines of the
program [JHS02, LNZ+05, LYF+05]. In particular, Jones et al. [JHS02] propose
to measure a kind of correlation between executing a given line and failing a test.
Denmat et al. [DDR05] show that this is similar to search for a restricted form
of association rules [AIS93, AS94] and that the restriction leads to limitations.

Searching for association rules is a well-known data mining task with a well-
documented rationale. The knowledge context is represented by a set of trans-
actions (objects) described by a set of items (attributes). Searching that context
for association rules consists in searching for implications where the premise and
the conclusion are sets of attributes. In order to measure the relevance of the
computed rules, some statistical indicators are used, such as support, confidence,
or lift. In the framework of association rules, the method of Jones et al. consists
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Table 1. Mutants of the Trityp program

Mutant # passed exec. # failed exec. Faulty line

1 288 112 [84] if ((trityp == 3) && (i+k > j))
2 384 16 [79] trityp = 0 ;
3 308 92 [64] trityp = i+1 ;
4 280 120 [87] if ((trityp != 3) && (j+k > i))
5 305 95 [65] if (i >= k)

in searching for rules with only one line in their premise and only the attribute
FAIL in conclusion. Note that the general association rule framework allows for
several attributes in the premise.

Formal Concept Analysis (FCA) [GW99] has already been used for several
software engineering tasks: to understand the complex structure of programs,
in order to “refactor” class hierarchies for example [Sne05]; to design the class
hierarchy of object-oriented software from specifications [GV05, AFHN06]; to
find causal dependencies[Pfa06]. Tilley et al. [TCBE05] presented a survey on
applications of FCA for software engineering activities : e.g. architectural design,
software maintenance. FCA finds interesting clusters, called concepts, in data
sets. The input of FCA is a formal context, i.e. a binary relation describing
elements of a set of objects by subsets of properties (attributes). A formal concept
is defined by a pair (extent, intent), where extent is the maximal set of objects
that have in their description all attributes of intent, and intent is the maximal
set of attributes common to the description of all objects of extent. The concepts
of the context can be represented by a lattice where each concept is labelled by
its intent and extent.

The main contribution of this article is to show that applying two data mining
techniques, association rules and FCA, produces better results than existing fault
localization techniques. This is discussed in detail Section 6. Another contribu-
tion is to propose to build upon the intuition of existing methods: the difference
or correlation between execution traces contains significant clues about the fault.
We combine the expressiveness of association rules to search for possible causes
of failure, and the power of FCA to explore the results of this analysis. The kind
of association rules that we use allows some limitations of other methods to be
alleviated. The goal of our method is no longer to highlight the faulty line but
to produce an explanation of the failure thanks to the lattice.

In the sequel, Section 2 describes the running example used to illustrate the
method. Section 3 presents the two contexts used by the method. Section 4 shows
how to interpret the rule lattice in terms of fault localization. Section 5 discusses
the statistical indicators. Section 6 presents the main contribution, the benefits
of our method compared to other methods. Section 7 discusses further work.

2 Running Example

Throughout this article, we use the Trityp program given in Figure 1 to illus-
trate our method. It classifies sets of three segment lengths into four categories:
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public int Trityp(){
[57] int trityp ;
[58] if ((i==0) || (j==0) ||

(k == 0))
[59] trityp = 4 ;
[60] else
[61] {
[62] trityp = 0 ;
[63] if ( i == j)
[64] trityp = trityp + 1 ;
[65] if ( i == k)
[66] trityp = trityp + 2 ;
[67] if ( j == k )
[68] trityp = trityp + 3 ;
[69] if (trityp == 0)
[70] {
[71] if ((i+j <= k) ||

(j+k <= i) ||
(i+k <= j))

[72] trityp = 4 ;
[73] else
[74] trityp = 1 ;
[75] }
[76] else
[77] {
[78] if (trityp > 3)
[79] trityp = 3 ;
[80] else

[81] if ((trityp == 1)
&& (i+j > k))

[82] trityp = 2 ;
[83] else
[84] if ((trityp == 2)

&& (i+k > j))
[85] trityp = 2 ;
[86] else
[87] if((trityp == 3)

&& (j+k > i))
[88] trityp = 2 ;
[89] else
[90] trityp = 4 ;
[91] }
[92] }
[93] return(trityp) ;}
static public
string conversiontrityp(int i){
[97] switch (i){
[98] case 1:
[99] return "scalen";
[100] case 2:
[101] return "isosceles";
[102] case 3:
[103] return "equilateral";
[104] default:
[105] return "not a ";}}

Fig. 1. Source code of the Trityp program

scalene, isosceles, equilateral, not a triangle. The program contains one class with
130 lines of code. It is a classical benchmark for test generation methods. Such a
benchmark aims at evaluating the ability of a test generation method to detect
errors by causing failure. To this purpose slight variants, mutants, of the bench-
mark programs are created. The mutants can be found on the web1, and we use
them for evaluating our localization method. For the Trityp program, 400 test
cases have been generated with the Uniform Selection of Feasible Paths method
of Petit and Gotlieb [PG07]. Thanks to that method, all feasible execution paths
are uniformly covered.

Table 1 presents the five mutants of the Trityp program that are used in this
article. The first mutant is used to explain in details the method. For mutant 1,
one fault has been introduced at Line 84. The condition (trityp == 2) is re-
placed by (trityp == 3). That fault implies a failure in two cases. The first case
is when trityp is equal to 2. That case is not taken into account as a particular
case and thus treated as a default case, at Lines 89 and 90. The second case is

1 http://www.irisa.fr/lande/gotlieb/resources/Java exp/trityp/
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Table 2. Example of the trace context for mutant 1 of the Trityp program

Line Line Line Line Line Line Line Line
66 68 81 84 85 87 90 93 · · · PASS FAIL

exec1 × × × ×
exec4 × × × × × × ×
exec69 × × ×
exec108 × × × × × ×
exec113 × × × × × × ×
exec114 × × × × × ×

· · · ×
exec400 × ×

when trityp is equal to 3. That case should lead to the test Line 87, but due
to the fault it is first tested at line 84. Indeed, if the condition (i+k>j) holds,
trityp is assigned to 2. However, (i+k>j) does not always entail (j+k>i),
which is the real condition to test when trityp is equal to 3. Therefore, trityp
is assigned to 2 whereas 4 is expected.

The fault of mutants 2 and 3 are on assignments. The fault of mutants 4 and 5
are on conditions.

3 Two Formal Contexts for Fault Localization

This section presents the information on which the localization process is based.
Firstly, a context is built from execution traces, the trace context. Secondly,
particular association rules are used to crosscheck the trace context. Thirdly,
a second context is introduced in order to reason on the numerous rules, the
rule context. How to interpret the rule lattice, associated to the rule context, is
presented in Section 4.

The Trace Context. In order to reason about program executions we use traces
of these executions. There are many types of trace information and discussing
them is outside the scope of this article (see for example [HRS+00]). Let us only
assume that each trace contains at least the executed lines and the verdict of
the execution, PASS if the execution produces the expected results and FAIL
otherwise. This is a common assumption in fault localization research. This forms
the trace context. The objects of the trace context are the execution traces. The
attributes are all the lines of the program and the two verdicts. Each trace is
described by the executed lines and the verdict of the execution.

Table 2 gives a part of the resulting trace context for mutant 1. For instance,
during the first execution, the program executes lines 66, 68, . . . and passes2.

Association Rules. In order to understand the causes of the failed executions,
we use a data mining algorithm [CFRD07] which searches for association rules. In

2 Complete context: http://www.irisa.fr/LIS/cellier/icfca08/trace context.txt
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Table 3. Example of the rule context for mutant 1 of the Trityp program with
minlift = 1.25 and minsup = 1

Line Line Line Line Line Line Line Line Line Line Line Line
81 84 87 90 105 66 78 112 113 · · · 17 58 93

r1 × × × × × × × × × × × ×
r2 × × × × × × × × × ×

· · ·
r8 × × × × × × ×
r9 × × × × × ×

addition, to reduce the number of association rules, we focus on association rules
based on closed itemsets [PBTL99]. Namely, we search for association rules where
1) the premises are the intents of concepts whose extent mostly contains failed
execution traces and few passed execution traces (according to the statistical
indicators) and 2) the conclusion is the attribute FAIL (Definition 1). This
corresponds to the selection of the concepts that are in relation with the concept
labelled by FAIL. Note that those concepts can be in relation with the concept
labelled by PASS, too.

Definition 1 (association rules for fault localization). The computed as-
sociation rules for fault localization have the form: L → FAIL where L is a set
of executed lines such that L ∪ {FAIL} is the intent of a concept in the trace
context and L ∩ {FAIL} = ∅.
Only the association rules that satisfy the minimum thresholds of the selected
statistical indicators are generated. We have chosen the support and lift indi-
cators. The support indicates the frequency at which the rule appears. In our
application, it measures how frequently the lines that form the premise of a given
rule are executed among the lines in a failure. The lift indicates if the occurrence
of the premise increases the probability to observe the conclusion. Relevant rules
are thus filtered with respect to a minimum support, minsup, and a minimum
lift, minlift. The threshold minsup can be very low, for instance to cope with
failures that are difficult to detect (for details see Section 5). The threshold
minlift is always greater or equal to 1 because otherwise the lift indicates that
the premises decrease the probability to observe the conclusion.

The Rule Context. The computation of association rules generates a lot of
rules, and especially rules with large premises. Understanding the links that
exist between the rules, for example if a rule is more specific than another, is
difficult to do by hand. The computed association rules, however, correspond
to concepts of the trace context. They are partially ordered according to their
premises; indeed L1 → FAIL is more specific than L2 → FAIL when L1 and
L2 are sets of lines such that L2 ⊂ L1. Therefore, in order to help analyze the
rules, we propose to build a new context, the rule context. The objects are the
association rules; the attributes are lines. Each association rules is described by
the lines of its premise.
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Fig. 2. Rule lattice for mutant 1 associated to the rule context of Table 3

Table 3 shows a part of the rule context for mutant 1 of the Trityp program
with the support threshold, minsup, equal to 1 object and the lift threshold
minlift equal to 1.25. The premise of rule1 contains : line 81, line 84, line 87,
line 90, . . .3 In addition, line 78, line 112, line 113, . . ., line 17, line 58, line 93 are
present in all rules which means that they are executed by all failed executions.

4 A Rule Lattice for Fault Localization

The rule lattice is the concept lattice associated with the rule context. It allows
association rules to be structured in a way that highlights the partial ordering
which exists between them. Figure 2 displays the rule lattice associated with the
rule context of Table 34. The remaining of this section presents a description of
the rule lattice and then gives an interpretation of it.

4.1 Description of the Rule Lattice

The rule lattice has the property that each concept can be labelled at most
by one object. Indeed, two different rules cannot have the same premise. If, in
the trace context, several executions have exactly the same description they are
abstracted in a single rule in the rule context.

The rule lattice is presented in a reduced labelling. In that representation each
attribute and each object is written only once. Namely, each concept is labelled
by the attributes and the objects that are specific to it. It is the most widespread
representation. As a consequence, the premise of a rule r can be computed by
collecting the attributes labelling all the concepts above the concept that is
labelled by r [GW99]. For example, on Figure 2 the premise of the rule which
3 Complete rule context: http://www.irisa.fr/LIS/cellier/icfca08/rules context.rl
4 The lattice was generated with the ToscanaJ tool (http://toscanaj.sourceforge.net/)
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labels Concept 3 is line 85, line 84, line 68, line 101, line 81, line 93, line 58,
line 17, plus the other 20 attributes (lines) that label the top concept.

In the rule lattice, the more specific rules are close to the bottom. When
the support threshold for searching for association rules is one object and the
lift threshold is close to 1, each most specific rule represents a single execution
path in the program that leads to a failure. For example, on Figure 2 there are
two very specific rules, the two concepts closest to the bottom: Concept 2 and
Concept 3. The rule which labels Concept 2 contains in its premise the lines
66, 105, 90, 87, 84, 81 and the label of the top concept. It corresponds to the
failure case when trityp is equal to 2 (see Section 2). The rule which labels
Concept 3 contains in its premise the lines 85, 84, 68, 101, 81 and the label of
the top concept. It corresponds to the failure case when trityp is equal to 3
(see Section 2). By looking at the support value of each rule, we note that three
rules relate to 60 failed executions (Concepts 2, 4, 7), in fact failed executions
when trityp is equal to 2; three rules relate to 52 failed executions (Concepts 3,
6, 9), in fact failed executions when trityp is equal to 3; and three rules relate
to 112 failed executions (Concepts 5, 8, 10), namely all failed executions.

4.2 Interpretation for Fault Localization

Navigating in the rule lattice bottom up first displays rules that are in general
too specific to explain the error. It then displays rules that are more general and
maybe more informative, and finally displays the top of the lattice which is la-
belled by the attributes (line numbers) that are common to all failed executions.

The bottom concept of the rule lattice in Figure 2 has no attribute in its
labelling. During the debugging session two paths are proposed to follow. The
leftmost path from the bottom concept, Concept 2, corresponds to the case
where variable trityp is equal to 3 and condition (i+k>j) holds whereas the
condition (j+k>i) does not hold. It leads to two concepts. The first concept is
Concept 7 labelled by line 66, it is the statement which initializes trityp to 2.
The second concept is Concept 4 labelled by three line numbers: 105, 90, 87.
These lines correspond to the case when the variable trityp is equal to 2 and
trityp is assigned to 4 when 2 is expected, i.e. the triangle is labelled as not a
triangle instead of isosceles. Those two concepts are too specific but by looking
at the rule of the concept upwards, the faulty line is localized. Concept 5 covers
the greatest number of failed executions (support=112) and has the greatest lift
among rules which have support equal to 112. The same reasoning can be done
with the rightmost concept, Concept 3. It also leads to line 85. It corresponds
to the then branch of the faulty conditional, i.e. the line where variable trityp
is assigned to 2 when 4 is expected. The rule of that concept is too specific to
understand the fault, it covers 52 failed executions. Following this path, three
paths open upwards: two concepts whose rules have the same support as the
rule of the concept that is labelled by line 85, Concept 6, 9; and a concept which
is labelled by line 84, the faulty line, Concept 5, whose rule covers the most
number of failed executions (support=112).
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Fig. 3. Rule lattice from program Trityp with mutant 2
(faulty line 79) with minlift=1 and minsup=1

Fig. 4. Rule lattice from
program Trityp with mu-
tant 3 (faulty line 64) with
minlift=1 and minsup=1

This example shows that the rule lattice gives relevant clues for exploring the
program. The faulty line is not highlighted immediately but exploring the lattice
bottom up guides the user in its task to understand the fault.

4.3 More Examples

One failed execution path. Figure 3 gives the rule lattice for mutant 2 when
association rules are computed with minlift=1 and minsup=1. Figure 4 gives
the rule lattice for mutant 3 when association rules are computed with minlift=1
and minsup=1. On those two examples the fault is a bad assignment. Only one
execution path leads to a failure. We see in those cases that the faulty lines
are immediatly highlighted in the label of the bottom concept. For example, in
Figure 3 we see the faulty line 79 at the bottom. We remark that the dependencies
between lines appear in the labelling. Indeed, in Figure 4 we see that the bottom
concept is labelled not only by the faulty line 64 but also by line 79 and line 103.
It is explained by two facts. Firstly, the execution of line 64 in a faulty way
always implies the execution of line 79 and 103. Secondly, few executions that
imply lines 64, 79 and 103 together pass. Note that all association rules of these
examples have the same support. They cover all failed execution traces.

Several failed execution paths. The execution of mutant 1 and 4 can fail with
different execution paths. Mutant 1 was detailed in the previous section. Figure 5
gives the rule lattice for mutant 4 when association rules are computed with
minlift = 1 and minsup = 1. The fault of mutant 4 is at line 87. In the rule
lattice of Figure 5, line 87 labels the concept which is labelled by a rule with the
greatest support. In addition, among rules with the greatest support, this one
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Fig. 5. Rule lattice from program Trityp with mutant 4 (faulty line 87) with minlift=1
and minsup=1

has the greatest lift. In other words, line 87 is one of the common lines of all
failed executions and with the least relation with passed executions.

Borderline case. Figure 6 gives the rule lattice for mutant 5 when association
rules are computed with minlift=1 and minsup=1. In the rule lattice, two
failed execution paths are highlighted. One covers 33 of the failed executions.
The other covers 62 of the failed executions. Looking at the common lines of
those two execution paths, we find line 66. The associated rule of line 66 has
the greatest lift among rules with support equal to 95. But the faulty line is 65.
Line 65 labels the top concept of the rule lattice. The faulty line is thus not
highlighted. It is due to the fact that line 65 is an if-statement executed by all
executions. The number of failed executions that execute line 65 is thus very low
with respect to the number of passed executions that execute line 65. However,
line 66 is the then branch of the condition of line 65. The method does not
highlight the faulty line but gives clues to find it.

5 Statistical Indicators

In order to compute and evaluate the relevance of association rules, several
statistical indicators have been proposed, for example support, confidence, and
lift [BMUT97]. The choice of statistical indicators and their thresholds is an im-
portant part of the computation of association rules. Depending on the selected
thresholds, the rule lattice may significantly vary and so does its interpretation.

Typically, the support is the first filtering criterion for the extraction of as-
sociation rules. It measures the frequency of a rule. For the fault localization
problem, the value of minsup indicates the minimum number of failed execu-
tions that should be covered by a concept of the trace context to be selected.
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Fig. 6. Rule lattice from program Trityp
with mutant 5 (faulty line 65) with min-
lift=1 and minsup=1

Fig. 7. Lattice from the rule context
of mutant 1 with minlift=1.5 and min-
sup=1

Choosing a very high threshold, only the most frequent execution paths are rep-
resented in the set of association rules. Choosing a very low threshold, minsup
equals to one object, all execution paths that are stressed by the test cases are
represented in the set of association rules. In our experiments, we choose minsup
equals to one object. It is equivalent to search for all rules that cover at least
one failed execution. The threshold can be greater in order to select less rules,
but some failed execution paths would be lost, although in fault localization rare
paths might be more relevant than common ones.

The other well-known indicator that we use is lift. In our approach, the lift
indicates how the execution of a set of lines improves the probability to have
a failed execution. The lift threshold can be seen as a resolution5 cursor. On
the one hand, if the threshold is high, few rules are computed, therefore few
concepts appear in the lattice. It implies that the label of each concept contains
a lot of lines, but each concept is very relevant. On the other hand, selecting a
low threshold implies that more rules are computed. Those rules are less relevant
and the number of concepts in the lattice increases. The number of attributes per
label is thus reduced. For example, let us consider mutant 1 of program Trityp.
Figure 2, already described in Section 4, shows the result lattice when the lift
threshold is equal to 1.25. Figure 7 shows the result lattice when the lift threshold
is equal to 1.5. Concept D of Figure 7 merges Concepts 5 and 8 of Figure 2.
Concepts D and 5 actually correspond to the same rule. Concept 8 correspond
to a more general rule with a lower lift. The same applies to Concepts C and 3, 6.

In addition, the concepts of the rule lattice have two properties thanks to the
statistical indicators related to the trace lattice. Property 1 states that the sup-
port of rules that label the concepts of the rule lattice decreases when exploring
the lattice top down. In the following, label(c)=r means that rule r labels con-
cept c of the rule lattice. The extent of a set of attributes, X , is written ext(X),
and ‖Y ‖ denotes the cardinal of set Y.

5 The word “resolution” is used here as in “image display resolution”.
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Property 1. Let c1 and c2 be two concepts of the rule lattice such that
label(c1)=r1 and label(c2)=r2. If c2 < c1 then sup(r2) ≤ sup(r1).

Proof. The fact that c2 < c1 implies that the intent of c2 contains the in-
tent of c1. The intent of concept c1 (resp. c2) is the premise, p1 (resp. p2),
of rule r1 (resp. r2), thus p1 ⊂ p2. Conversely ext(p2) ⊂ ext(p1). As the defini-
tion of the support of a rule r = p → FAIL is sup(r) = ‖ext(p) ∩ ext(FAIL)‖,
sup(r2) ≤ sup(r1) holds.

Property 2 is about the lift value. If two ordered concepts in the rule lattice are
labelled by rules with the same support value, the lift value of the rule which
labels the more specific concept is greater. That is why the rule lattice is explored
bottom up (see Section 4.2).

Property 2. If c2 < c1 and sup(r2) = sup(r1) then lift(r2) > lift(r1).

Proof. In the previous proof we have seen that c2 < c1 implies that ext(p2)
⊂ ext(p1). The definition of the lift of a rule r = p → FAIL is lift(r) =

sup(r)
‖ext(p)‖‖ext(FAIL)‖ ∗ ‖O‖. As sup(r2) = sup(r1), and ‖ext(p2)‖ < ‖ext(p1)‖,
lift(r2) > lift(r1) holds.

6 Benefits of Using Association Rules and FCA

The contexts and lattice structures introduced in the previous sections allow
programmers to see all the differences between execution traces as well as all the
differences between association rules. There exists other methods which compute
differences between execution traces. Section 6.1 shows that the information
about trace differences provided by our first context (and the corresponding
lattice) is already more relevant than the information provided by four other
methods proposed by Renieris and Reiss [RR03], as well as Zeller et al. [CZ05].
Section 6.2 shows that explicitly using association rules with several lines in the
premise alleviate many of the limitations of Jones et al.’s method mentioned
in the introduction [JHS02]. Section 6.3 shows that reasoning on the partial
ordering given by the proposed rule lattice is more relevant than reasoning on
total order rankings [JHS02, LNZ+05, LYF+05].

6.1 The Trace Context Structures Execution Traces

The first context that we have introduced, the trace context, contains the whole
information about execution traces (see Section 3). In particular, the associated
lattice, the trace lattice, allows programmers to see in one pass all differences
between traces. Figure 8 shows the trace lattice of mutant 1.

There exists several fault localization methods based on the differences of
execution traces. They all assume a single failed execution and several passed
executions. We rephrase them in terms of search in a lattice to highlight their
advantages, their hidden hypothesis and limitations.
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Fig. 8. Lattice from the trace context of mutant 1 of the Trityp program

The union model, proposed by Renieris and Reiss [RR03], aims at finding
features that are specific to the failed execution. The method is based on trace
differences between the failed execution f and a set of passed executions S:
f − ⋃

s∈S s. The underlying intuition is that the failure is caused by lines
that are executed only in the failed execution. Formalized in FCA terms, the
concept of interest is the one whose label contains FAIL, and the computed
information is the lines contained in the label. For example, in Figure 8 this
corresponds to the upper concept on the right-hand side which contains no line
in its label, namely the information provided by the union model is empty. The
trace lattice presented in the figure is slightly different from the lattice that would
be computed for the union model, because it represents more than one failed
execution. Nevertheless, the union model often computes an empty information,
namely each time the faulty line belongs to failed and passed execution traces.
For example, a fault in a condition has a very slight chance to be localized. Our
approach is based on the same intuition. However, as illustrated by Figures 8
and 2, the lattices that we propose do not lose information and help to navigate
in order to localize the faults, even when the faulty line belongs to failed and
passed execution traces.

The union model helps localize bug when executing the faulty statement al-
ways implies an error, for example the bad assignment of a variable that is the
result of the program. In that case, our lattice does also help, the faulty state-
ment label the same concept as FAIL.

The intersection model [RR03] is the complementary of the previous model.
It computes the features whose absence is discriminant of the failed execution:
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⋂
s∈S s − f . Replacing FAIL by PASS in the above discussion is relevant to

discuss the intersection model and leads to the same conclusions.
The nearest neighbor approach [RR03] computes the Ulam’s distance metrics

between the failed execution trace and a set of passed execution traces. The
computed trace difference involves the failed execution trace, f , and only one
passed execution trace, the nearest one, p: f − p. That difference is meant to
be the part of the code to explore. The approach can be formalized in FCA.
Given a concept Cf whose intent contains FAIL, the nearest neighbor method
search for a concept Cp whose intent contains PASS, such that the intent of Cp

shares as many lines as possible with the intent of Cf . On Figure 8 for example,
the two circled concepts are “near”, their share all their line attributes except
the attributes FAIL and PASS, therefore f = p and f − p = ∅. The rightmost
concept fails whereas the leftmost one passes. As for the previous methods, it is
a good approach when the execution of the faulty statement always involves an
error. But as we see on the example, when the faulty statement can lead to both
a passed and a failed execution, the method is not sufficient. In addition, we
remark that there are possibly many concepts of interest, namely all the nearest
neighbors of the concept which is labelled by FAIL. With a lattice that kind of
behavior can be observed directly.

Note that in the trace lattice, the executions that execute the same lines are
clustered in the label of a single concept. Executions that are near share a large
part of their executed lines and label concepts that are neighbors in the lattice.
There is therefore no reason to restrict the comparison to a single pass execution.
Furthermore, all the nearest neighbors are naturally in the lattice.

Delta debugging, proposed by Zeller et al. [CZ05], reasons on the values of
variables during executions rather than on executed lines. The trace information,
and therefore the trace context, contains different types of attributes. Note that
our approach does not depend on the type of attributes and would apply on
traces containing other attributes than executed lines.

Delta debugging computes in a memory graph the differences between the
failed execution trace and a single passed execution trace. By injecting the values
of variables of the failed execution into variables of the passed execution, the
method tries to determine a small set of suspicious variables. One of the purpose
of that method is to find a passed execution relatively similar to the failed
execution. It has the same drawbacks as the nearest neighbor method.

6.2 Association Rules Select a Part of the Trace Context

As it was presented in the introduction, Jones et al. [JHS02] compute association
rules with only one line in the premises. Denmat et al. show that the method
has limitations, because it assumes that an error has a single faulty statement
origin, and lines are independent. In addition, they demonstrate that the ad hoc
indicator which is used by Jones et al. is close to the lift indicator.

By using association rules with more expressive premises than the Jones et
al. method (namely with several lines), the limitations mentioned above are
alleviated. Firstly, the fault can be not only a single line, but the execution
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of several lines together. Secondly, the dependency between lines is taken into
account. Indeed, dependent lines are clustered or ordered together.

The part of the trace context which is important to search for localizing a fault
is the set of concepts that are around the concept labelled by FAIL; i.e. those
that have a non-empty intersection with the concept labelled FAIL. Computing
association rules with FAIL as a conclusion computes exactly those concepts,
modulo the minsup and minlift filtering. In other words the focus is done on
the part of the lattice around the concept labelled by FAIL. For example, in the
trace lattice of the Trityp program presented in Figure 8, the rule lattice when
minlift is very low (yet still attractive, i.e. minlift>1), is drawn in bold lines.

6.3 The Rule Lattice Structures Association Rules

Jones et al.’s method presents the result of their analysis to the user as a coloring
of the source code. A red-green gradient indicates the correlation with failure.
Lines that are highly correlated with failure are colored in red, whereas lines
that are highly not correlated are colored in green. Red lines typically represents
more than 10% of the lines of the program, whithout identified links between
them. Some other statistical methods [LNZ+05, LYF+05] also try to rank lines
in a total ordering. It can be seen as ordering the concepts of the rule lattice by
the lift value of the rule in their label. From the concept ordering the lines in
the label of those concepts can be ordered.

For example, on the rule lattice of Figure 2, the obtained ranking would be:
line 85, line 66, line 68, line 84, . . . No link would be established between the
execution of line 85 and line 68 for example.

The user who has to localize a fault in a program has a background knowledge
about the program, and can use it to explore the rule lattice. The reading of the
lattice gives a context of the fault and not just a sequence of independent lines
to be examined, and reduces the number of lines to be examined at each step
(concept) by structuring them.

7 Further Work

The process proposed in this article for fault localization is already usable at
the end of the debugging process. When the programmer has a rough idea of
the location of the faults and that only a small part of the execution has to be
traced, the current techniques to visualize lattices can be directly used.

However, we conjecture that the technique, with some extensions, can be used
to analyze large executions. At present, the information is presented in terms
of lines whereas it is not always the most relevant information granularity. For
example, given a basic block (i.e. a sequence of instructions with neither branch-
ing nor conditional), all its lines always appear in the same label. Displaying
the location of the basic block would be more relevant. This will help keeping
concept labels to a readable size. We are currently working on the presentation
of the results to reduce their size and to give more semantics to them so that
they are more tractable for users.
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Another further work is the computation of the concepts of the rule context
directly from the trace context. Indeed, the concepts of the rule lattice belong
to the trace lattice. However, gathering the two computations, association rules
from the trace context and concepts from the rule context, is not a trivial task
due to the statistical indicators which are not monotonous, for example the lift.

8 Conclusion

In this article we have proposed a new application of FCA: namely, fault localiza-
tion. The process combines association rules and formal concept lattices to give
a relevant way to navigate into the source code of faulty programs. Compared
to existing methods, using a trace lattice has three advantages. Firstly, thanks
to the capabilities of FCA to crosscheck data, our approach computes in one
pass more information about execution differences than all the cited approaches
together. In particular, the information computed by two methods, the union
model and the intersection model, can be directly found in the trace lattice.
Secondly, the lattice structure gives a better reasoning basis than any particular
distance metrics to find similar execution traces. Indeed, all differences between
the sets of executed lines of passed and failed executions are represented in the
trace lattice. A given distance between two executions can be computed by dedi-
cated reasoning on specific attributes. Thirdly, our approach treats several failed
executions together, whereas the presented methods can analyze only one failed
execution.

Moreover, the generality of the FCA framework makes it possible to handle
traces that contain other information than lines numbers. In summary, cast-
ing the fault localization problem in the FCA framework helps analyze existing
approaches, as well as alleviate their limitations.
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Abstract. Software engineers often need to identify and correct de-
sign defects, i.e., recurring design problems that hinder development and
maintenance by making programs harder to comprehend and/or evolve.
While detection of design defects is an actively researched area, their
correction — mainly a manual and time-consuming activity — is yet to
be extensively investigated for automation. In this paper, we propose an
automated approach for suggesting defect-correcting refactorings using
relational concept analysis (rca). The added value of rca consists in
exploiting the links between formal objects which abound in a software
re-engineering context. We validated our approach on instances of the
Blob design defect taken from four different open-source programs.

Keywords: Design Defects, Refactoring, Relational Concept Analysis.

1 Introduction

Design defects are “bad” solutions to recurring design problems that generate
negative consequences on the quality characteristics of object-oriented (OO)
software systems, such as evolvability and maintainability, and therefore increase
the cost of software development [5,16]. Design defects, such as antipatterns [28]
(e.g., the Blob addressed below), are distinguished from low-level defects, such
as code smells [5] (e.g., long methods and large classes). Automatic detection
and correction of design defects are thus keys for the improvement of software
quality.

We proposed a systematic method to specify design defects consistently and
precisely and to generate detection algorithms from their specifications auto-
matically [17]. We specified a language based on rules that allows to define these
specifications with structural, semantic, and measurable properties that char-
acterize a design defect. This method was a first step towards the systematic
detection of design defects. Yet both detection and correction of such defects are
time-consuming and error-prone activities hence leaving room for automated
techniques and tools. On the one hand, approaches exist for detecting design de-
fects, for instance, using metrics [15,21], coupled with visualisation tools [13,14]
and/or structural data [9]. On the other hand, to the best of our knowledge,
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none of them attempts to correct discovered defects in a semi- or fully auto-
mated manner.

Thus, design defects are still dealt with manually through tedious code analy-
ses and transformations, which divides into three main steps, possibly repeated
through trials and errors: (1) Identification of the modifications to correct the
design defects, (2) Application of the modifications on the program, (3) Evalu-
ation of the resulting modified program. Step two of correction has been made
easier by the recent introduction of refactorings [5], i.e., changes performed on
the source code of a program to improve its internal structure without changing
its external behaviour. Thus, possible transformations are now well understood
and documented and the emphasis lies on step one, i.e., the decision of which
modifications (or refactorings) to apply.

In the literature, Trifu et al. [27] proposed correction strategies mapping de-
sign defects to possible solutions. However, a solution is only an example of how
the program should have been implemented to avoid a defect rather than a list
of steps that a software engineer could follow to correct the defect. Huchard
and Leblanc [11] used formal concept analysis (fca) to suggest class hierarchy
restructuring so as to maximise the sharing of specifications and code and to
remove code smells (see [6] for a broader discussion on the restructuring of class
hierarchies through fca). In summary, both approaches address important is-
sues with design defects but none attempts to suggest refactorings to correct
them.

We propose to apply rca, that extends fca with the processing of individuals
with links, on a suitable representation of a program to help identify appropriate
refactorings for specific design defects. In particular, we examine the benefits of
rca for the correction of a very common design defect, the Blob [28, p. 73–
83], also known as God Class [22]. The Blob reveals a procedural design (and
thinking) implemented with an OO programming language. It manifests itself
through a large controller class that plays a God-like role in the program by
monopolizing the computation, and which is surrounded by a number of smaller
data classes providing many attributes but few or no methods.

Blobs are common and rca is particularly well-suited to suggest refactorings
to correct them. Indeed, correcting a Blob amounts to splitting the Blob class
into smaller cohesive sets by grouping class members that collaborate to realize
a specific responsibility of the Blob class. In our context, cohesive sets are iden-
tified using formal concepts whose intents involve both proper characteristics
and inter-member links, such as calls between methods. Our enhanced approach
is illustrated using a running example of a library management system, which
includes a Blob.

The present work builds upon a previous study described in [18] that relied on
standard fca. Its contribution is three-fold. First, a more powerful approach is
adopted based on finer and richer modeling of the problem through rca. Then,
a set of enhanced rules for candidate class extraction out of the concept sets is
designed, each rule is provided with an effective algorithm. Third, a mechanism
to automatically interpret the results is introduced to suggest the refactorings
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to apply. A validation thereof involving Blobs from four different open-source
programs is also presented. The results show that rca suggests a high rate of
relevant refactorings and we briefly discuss the application of our method on
further design defects.

The paper starts by a short presentation of design defects correction (Section
2). Follow a summary on rca (Section 3) and the description of our approach
(Section 4). Section 5 presents the results of a preliminary empirical study of the
approach validity. Related work is summarised in Section 6 while future research
directions are given in Section 7.

2 The Defect Correction Problem

In the following, we relate design defects to general quality criteria for OO

designs using an occurrence of the Blob as running example. The defects are
shown to decrease scores on these criteria. The improvement brought by the
fca-based refactorings is discussed in later sections.

2.1 Quality Criteria

Design defects are the results of bad practices that transgress good OO principles.
Thus, we use the degree of satisfaction of those principles before and after the
correction as a measure of improvement. We rely on quantification of coupling
and cohesion, which are among the most widely acknowledged software quality
characteristics, keys for maintainability [2].

The cohesion of a class reflects how closely the methods are related to the
instance variables in the class [4] and is typically measured by the LCOM metric
(Lack of COhesion Metric: between 0 and 1) which uses the number of disjoint
sets of methods [4]. A low LCOM score characterises a cohesive class whereas a
value close to 1 indicates a lack of cohesion and suggests the class might better
be split into cohesive sets. The coupling of a class to the rest of a program is
defined as the degree of its reliance on services provided by other classes [4].
It is measured by the CBO metric (Coupling Between Objects) [3] that counts
the classes to which a class is coupled. A well-designed program exhibits high
average cohesion and low average coupling, but it is widely known that these
criteria are antinomic hence a trade-off is usually sought.

2.2 Further Design Defects

We choose to illustrate our approach with the Blob because it impacts nega-
tively both cohesion and coupling: blobs show low cohesion and high coupling.
Moreover, it is a frequent defect in OO programs. For example, a previous study
revealed 1,146 Blobs in the Eclipse IDE [19] even though it is recognised for the
quality of its design.

Yet, we found that a good number of other design defects are infected by
low cohesion and high coupling, e.g., Divergent Change [5, page 79], Feature



292 N. Moha et al.

Envy [5, page 80], Inappropriate Intimacy [5, page 85], Lazy Class [5, page 83],
Shotgun Surgery [5, page 80], or Swiss Army Knife [28, page 197]. Therefore,
our approach could be adapted to these defects.

2.3 Running Example

Our running example (see Figure 1) was inspired by a simple library management
system, which includes a Blob (described in [28]). The large controller class is
the class Library Main Control that accesses to data of the two surrounding data
classes Book and Catalog.

Fig. 1. Library Blob class diagram

Refactoring a Blob consists in moving class members away from the large
controller class to its surrounding classes or to new specifically designed classes.
For the class Library Main Control, we notice that all methods and fields related
to Book or Catalog could be moved to their respective data classes. As a result,
data classes gain more behaviour while the large class becomes less complex.
However, the process of choosing and applying refactoring is long and tedious:
software engineers need to go through all methods and fields of the large class
to identify the subsets thereof that form consistent cohesive sets. Yet it is a
necessary pain because the result of the process may substantially improve the
quality of the program.



Refactorings of Design Defects Using Relational Concept Analysis 293

3 Relational Concept Analysis

fca offers a framework to derive conceptual hierarchies from sets of individuals
based on the properties that these individuals share1.

3.1 Formal Concept Analysis

fca describes (formal) concepts both extensionally and intentionally, i.e., as sets
of individuals and sets of shared properties, and organizes them hierarchically—
according to a generality relation—into a complete lattice, called the concept
lattice. The lattice structure allows easy navigation and search as well as optimal
representation of information comparable to the classical OO requirement of
maximal factorisation (each property/individual is canonically represented by a
unique concept). For instance, the table on the left-hand side of Fig. 2 illustrates
a binary context derived from the class Library Main Control where individuals
are the Blob methods while properties are methods and accessed fields2. Fig. 3
depicts a simplified (reduced) labeling of the concept lattice derived from this
context, yet enriched by additional properties as described later in this section.

Fig. 2. Left: Context of methods. Right: Binary relation ‘call’ between methods.

Formal concepts naturally endow “cohesiveness” because their extents com-
prise members sharing all the properties in the respective intents. Conversely,
1 We use individuals for objects and properties for attributes to avoid confusion with

OO objects and attributes.
2 The prefixes R- and W- that appear in the field names specify the access mode, i.e.,

read and write, respectively.
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concept extents are maximal sets for the respective intent. In order to iden-
tify highly cohesive sets that could jointly replace the Blob class and hence
improve the overall quality, a suitable formalization consists in using class meth-
ods as individuals and instance variables as properties. For example, the concept
({open Library(), close Library()},{W-library opened}) (concept c9 in Fig. 3)
could generate a smaller, hence more cohesive, class.

Furthermore, in an attempt to reduce coupling in the resulting OO code, we
consider the links between class members such as method calls (see Fig. 2, on
the right). For instance, both methods borrow Book() and reserve Book() call
check Availability Book(). Assigning the first two methods to the same class
inevitably decreases the class coupling in the OO code. Therefore, we would like
to define an approach that allows grouping these methods. We use rca to do
so because grouping individuals based on the links they share, i.e., the calls of
same or comparable methods, is beyond the scope of classical fca.

3.2 Bringing Relations to Concept Intents

Relational concept analysis (rca) is an approach for extracting formal con-
cepts from sets of individuals described by properties, called also local proper-
ties, and links. rca comes up with formal concepts that are connected in the
same way that description logics concepts are connected, i.e., by means of role
restrictions involving logical quantifiers. rca input data is organized within a
structure called relational context family (rcf) that comprises a set of binary
contexts Ki = (Oi, Ai, Ii) and set of binary relations rk ⊆ Oi × Oj , where Oi

and Oj are the individual sets of Ki (domain) and Kj (range), respectively. For
instance, the context encoding the access of fields by methods and the binary
relation call that links methods of the Blob with one another form a sample rcf

(see Fig. 2).
A scaling mechanism is used to translate links into context properties: rela-

tions are interpreted as features whose values are sets of individuals, hence the
target properties are predicates describing these sets. The predicates are derived
from the available concept lattice on the underlying context. Thus, for a given
relation seen as a function r : Oi → 2Oj , new properties, called relational, of the
form qr:c, are added to Ki, where c is concept on Kj and q a scaling operator
(comparable to role restriction connectors in description logics). An individual
o ∈ Oi gets a property qr:c depending on the relationship between its link set
r(o) and the extent of c = (X, Y ). The relationship can be either inclusion,
i.e., r(o) ⊆ X (called universal scaling schema, q is ∀), or non-empty intersec-
tion, i.e., r(o) ∩ X (called existential scaling schema, q is ∃). Formally, given a
context Ki=(Oi, Ai, Ii), a relation r ⊆ Oi × Oj and the lattice Lj of Kj , the
image of Ki for the existential scaling operator is: sc∃(Ki) = (Oi, A

+
i , I+

i ), where
A+

i = Ai ∪ {∃r : c|c ∈ Lj} and I+
i = Ii ∪ {(o, ∃r : c)|o ∈ Oi, c = (X, Y ) ∈

Lj , r(o)∩X 	= ∅}). In the present study, as in the vast majority of software engi-
neering applications of rca, current or anticipated, only the existential scaling
is suitable. Hence we shall be systematically omitting the ∃ sign in attribute
names to keep notations simple.
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Table 1. Scaling of the Blob context along the relation call. For space limitation,
individuals that are not affected by relational scaling are omitted.

call:c0 call:c2 call:c4 call:c5 call:c6 call:c11
borrow Book() × × ×
issue LibraryCard() × ×
reserve Book() × × ×
sort Catalog() × × × ×

For example, assume methods are scaled along relation call regarding the
lattice of the context in the left hand side of Fig. 2, which is composed of the
concepts {c0, c2, c4, c5, c6, c11} and the respective precedence links illustrated
in Fig. 3. Since the method sort Catalog() calls the method add Book() which
appears in the extent of concepts c0, c2 and c5 and calls the method remove -

Book() which belong to the extent of concepts c11 and c5, the Blob context is
extended by the relational properties call:c0, call:c2, call:c5 and call:c11. Table 1
presents the integration of the relation call to the Blob context.

The scaling mechanism is only one step in the global analysis process which,
given a rcf, yields a set of lattices, one per context, called relational lattice family
(rlf). The rlf is defined as the set of lattices whose concepts jointly reflect all
the shared properties and links among individuals of the rcf. Its construction
is an iterative process because the scaling mechanism modifies contexts and
thereby the corresponding lattices, which in turn may require a new scaling to
reflect the newly formed concepts and the link sharing they provoke. Iterations
stop whenever a fixed point is reached, i.e., further scaling leaves all the lattices
in the rlf unchanged.

Lattice evolution is illustrated though the analysis of the Blob rcf in Fig. 2:
rca yields the concept lattice illustrated in Fig. 3. The final lattice of the Blob is
different from the initial one due to the relational information inserted into the
scaled version of the Blob context. Indeed, the individuals are assigned relational
properties that lead to the sharing of more properties among these individuals.
By factoring out the new properties into concept intents, links between individu-
als are lifted up to the concept level, yielding relations between concepts3. Thus,
in Fig. 3, previously existing concepts obtain new properties while completely
new concepts emerge. For example, the concept c16 that represents the method
sort catalog() has been assigned the relational properties call:c0 and call:c11,
which means that sort catalog() calls methods in the extent of concept c0 and
c11, namely add book() and remove book(). Furthermore, methods borrow Book()

(concept c3) and reserve Book() (concept c12) have top concept as immediate
successor in the initial lattice. Their link with the method check Availability -

Book() (concept c4) has been revealed through scaling. They form a new concept
c19 (see Fig. 3) that represents the set of methods that call check Availability -

Book().

3 Observe that for compactness reasons, only non-redundant relational properties are
visualized in concept intents, i.e., those referring to the most specific concepts.
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Fig. 3. The lattice of the context of methods shown in Fig. 2

4 Correction of Design Defects Using RCA

Our intuition is that design defects resulting in high coupling and low cohesion
could be improved by redistributing class members among existing or new classes
to increase cohesion and/or decrease coupling. rca provides a particularly suit-
able framework for the redistribution because it can discover strongly related
sets of individuals with respect to shared properties and inter-individual links
and hence supports the search of cohesive subsets of class members. Fig. 4 de-
picts our approach for the identification of refactorings to correct design defects
in general and the Blob in particular. It shows the tasks of detection of design
defects and of correction of user-validated defects.

4.1 Overall Process

We define a three-step rca-based correction process that follows a two-step
defect detection process. First, we build a model of the program that is simpler
to manipulate than the raw source code and therefore eases the subsequent
activities of detection and correction. The model is instantiated from a meta-
model to describe OO programs. Next, we apply well-known algorithms based
on metrics and–or structural data on this model to single out suspicious classes
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having potential design defects [17]. For each suspicious class, we automatically
extract a rcf that encodes relationships among class members from the model
of the program. Then, the obtained rcf is fed into a rca engine that derives
the corresponding concept lattices. Finally, the discovered concepts are explored
using some simple algorithms, which apply a set of refactoring rules that allow
the identification of cohesive sets of fields and methods. The approach suggests a
set of refactorings that jointly amount to splitting the Blob into as many classes
as there are cohesive sets and merge the content of the surrounding classes with
the new classes whenever appropriate.

Detection

RCA Engine

Code Representation

RCF Modeling Interpretation

        Code

Model

1

Suspicious Classes

Relational Context Family Relational Lattice Family

Refactorings

2

3 4 5

PADL MetamodelMetric-based Detection

RCA-based Correction

Fig. 4. RCA-based Workflow for the Detection and Correction of Design Defects

4.2 RCF Extraction

To correct design defects, we need to identify cohesive sets of methods with
respect to the mode of usage of fields, i.e., read or write, and call between
methods. Hence, the individuals are methods of the large class and properties
are its fields. The incidence relation represent the access of fields in read/write
mode. In order to differentiate between the two access modes, the prefixes R-
and W- are added to the name of the fields as illustrated in Fig. 2. Method
invocations within the large class are encoded by a dedicated inter-individuals
relation denoted call (see the table in the right hand side of Fig. 2).

The formal attributes were derived from names of methods and added to the
method context. These attributes allow the emergence of a single concept for
each method, called method concept4, in the corresponding lattice. Beside list-
ing the entire set of properties of a given method, the concept method helps
preserving one-to-one invocation between methods. These details can be lost
during the scaling step that aims at integrating the relation call into the con-
text of the large class by substituting one-to-many invocations for those of type
one-to-one.

4 The smallest extent in the lattice containing this method.
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4.3 Deriving the Lattice

Fig. 3 represents the concept lattice obtained by the rcf engine from the context
given in Fig. 2. The concepts of the lattice represent the refactoring opportuni-
ties of the design defect. Indeed, concepts such as c9 exhibit group of methods
using the same sets of fields and fields used by cohesive sets of methods. These
concepts are considered as class candidates because they are cohesive. In addi-
tion, concepts such as c3 and c12 highlight subsets of cohesive methods, because
methods calling the same set of other methods are highly cohesive. A third
category of concepts such as c9 and c13 represent the use-relationship between
methods of the large class and the surrounding data classes. The study of these
concepts allow to assess the coupling between the large class and its surrounding
data classes. Thus, we can identify which methods and fields of the large class
should be moved to surrounding classes.

4.4 Suggesting Refactorings

The rlf of the Blob is used to interpret the inner structure of the Blob and then
suggest refactorings. More specifically, we apply algorithms looking for concepts
that reflect the presence of highly cohesive and weakly coupled sets. Intuitively,
shared usages of fields and calls of methods is a sign of cohesion whereas coupling
is directly expressed by the reliance of a method on a surrounding class (method
and-or field). Following these design guidelines, we correct the Blob in two ways.
First, we move disjoint and cohesive sets of methods and-or fields that are related
to a data class in that data class. Two refactorings describe such migration
between classes: Move Method [5, p.142] and Move Field [5, p.146]. Second, we
organise cohesive subsets that are not related to data classes in separate classes.
In addition to the two previous refactorings, we use the refactoring Extract Class
[5, p.149], which consists in creating a new class and moving the chosen fields
and methods from the old class to the new class using the two first previous
refactorings.

We have specified three refactoring rules to build incrementally cohesive sets
by visiting the concept lattice of methods. These rules are applied in sequence,
i.e., we apply the two first rules that deal with the access of fields by methods
in read-write mode and then the rule that handle method calls.

Rule 1. Methods accessing in write mode the same set of fields are gathered in
a single cohesive set.

Rule 2. Methods accessing in read mode the same set of fields are gathered in
a single cohesive set if the number of common fields that they access is higher
than the number of fields they access separately.

These two rules are inspired from the object identification approach described
in [23] where grouping of methods is based on the accessed fields, with respect
to the number of fields they access separately. The obtained cohesive sets are
merged according to the following rule:
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Rule 3. Methods that call the same set of methods are put in a single cohesive
set if the number of jointly called methods is higher than the number of methods
called separately.

For example, by applying the three previous rules on the running example of
the library Blob class, we obtain several cohesive sets as illustrated in Fig. 5,
on the left. The cohesive sets that should be migrated in the data classes are
shown in Fig. 5 on the right. This last step is currently performed manually but
planned to be automated.

Fig. 5. Left: The cohesive sets obtained from class Library Main Control depicted in
Fig. 1. Right: Moving these cohesive Sets to existing data-classes or new-classes.

We provide the implementation details of these rules in the following.

Implementing Rule 1. We iterate the lattice and record all concepts related
to fields with the prefix W-. We mark all these concepts as visited. We sort this
list in reverse order by the number of fields with W-. Thus, fields that are accessed
in write mode by a high number of methods are processed first. For example,
the concept c3 in Fig. 3 is processed first because of the related concept c13.
For each concept of the list, we create a new cohesive set and apply the method
applyRuleWrite(). This method consists in moving the current(s) field(s)
(borrow date book et return date book in concept c13) with the refactoring
Move Field and for each method in the intent of the current concept (borrow -
Book()) that has not yet been included in a set (i.e., not yet visited), we move it
to the current cohesive set using the refactoring Move Method. Then, recursively,
we check the parents of the current concept and the children of a parent if
interesting to explore. The children of a parent are interesting to explore if the
parent contains at least one W- field also contained in the current concept. For
example, only the children of the parent c13 of the concept c3 are interesting to
explore. We reapply the rule applyRuleWrite() on the children.
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Implementing Rule 2. This rule consists in finding the best cohesive set of
methods that access to a common set of fields in read mode. For each concept
related to common fields in read mode and not yet visited i.e., not processed
when applying Rule 1, and thus not included in a set, we calculate a ratio. The
ratio corresponds to the number of fields in common with their total number of
fields. We calculate the mean of all the ratios corresponding to each concept and
retain only groups of concepts that have a mean higher than 0.5, i.e., concepts
whose methods accessing a common number of fields is higher than their own
number of fields in average. We obtain thus a list of candidate sets of concepts
that we sort in reverse order to process first concepts with a greater ratio. For
each sets of concepts, we create a new cohesive set by moving the methods
and fields with the respective appropriate refactorings (Move Field and Move
Method).

Implementing Rule 3. This rule is similar to rule 2. The difference is that
we identify common methods called by one or several methods of the resulting
cohesive sets built from Rules 1 and 2. We calculate also a ratio and select the
best candidates, and then merge the cohesive sets according to the value of their
ratio.

5 Experimental Study

We use PADL [10] to model source code and Galicia v.2.1 [20], to construct
and visualize the concept lattices. PADL is the meta-model at the heart of the
Ptidej tool suite (Pattern Trace Identification, Detection, and Enhancement in
Java) [8]. Galicia is a multi-tool open-source platform for creating, visualizing,
and storing concept lattices [20]. Both tools communicate by means of XML
files describing data and results. Thus, an add-on to Ptidej generates contexts
in the XML format of Galicia, which are then transformed by the tool into
lattices and shown on screen for exploration.

In order to validate the proposed approach for the detection and correction
of Blob design defects, we consider four different open-source programs. We use
freely available programs to ease comparisons and replications of our experi-
ments. We provide some information on these programs in Table 2.

In Azureus, we found 41 Blobs by applying our detection algorithms. We
notice that the underlying classes are difficult to understand, maintain, and
reuse because they have a large number of fields and methods. For example,
the class DHTTransportUDPImpl in the package com.aelitis.azureus.core.-
dht.transport.udp.impl, which implements a distributed sloppy hash table
(DHT) for storing peer contact information over UDP, has an atypically large
size. It declares 42 fields and 66 methods for 2,049 lines of code. It has a medium-
to-high cohesion of 0.542 and a high coupling of 81 (8th highest value among
1,626 classes). The data classes that surround this large class are: Average,
HashWrapper in package org.gudy.azureus2.core3.util and IpFilterMan-
agerFactory in package org.gudy.azureus2.core3.ipfilter.
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Table 2. List of Programs

Name Version Lines of Code
Number of Number of

Classes Interfaces
Azureus 2.3.0.6 191,963 1,449 546
A peer-to-peer client implementing the BitTorrent protocol
Log4J 1.2.1 10,224 189 14

A logging Java package
Lucene 1.4 10,614 154 14

A full-featured text-search Java engine
Nutch 0.7.1 19,123 207 40

An open-source web search engine, based on Lucene

Table 3. Blob Classes in Four Different Programs and the Number of Cohesive Sets
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Azureus v2.3.0.6
DHTTransportUDPImpl (42+66) 108 2,049 0.542 81 (27+32) 59 10 7
DHTControlImpl (47+80) 127 1,868 0.52 67 (35+62) 97 19 11
TRTrackerBTAnnouncerImpl (36+47) 83 1,393 0.948 54 (24+33) 57 16 5

Log4j v1.2.1
LogBrokerMonitor (29+105) 134 1,591 0.479 86 (23+85) 108 31 17
Category (9+53) 62 1,042 0.831 46 (8+44) 52 18 9

Lucene v1.4
IndexReader (7+52) 59 593 0.661 68 (5+30) 35 4 2
QueryParser (36+48) 84 1,085 0.3 26 (24+37) 61 13 10

Nutch v0.7.1
FSNamesystem (24+35) 59 1,211 0.908 23 (17+25) 42 18 9
JobTracker (22+31) 53 910 0.938 21 (17+18) 35 11 8

Table 3 provides the results of applying our rules on three different Blobs
classes detected in Azureus and on two Blobs classes in the three other programs.
It is noteworthy that the results provided by our method have been assessed
manually: Among the set of all cohesive sets in the output we identified those
whose semantics could be clearly established and it confirmed their cohesiveness.
A measure for the precision of our method is the ratio of the real cohesive sets
to the total number of sets output by the method. As Table 3 indicates, the
precision may vary within a wide range (from 30 to 70 % of correct guesses).
The cohesive sets suggested by our approach include an important number of
small cohesive sets, which include generally at most one field and one or two
methods. This explains why we did not get a good precision. The other concise
sets gather between 10 and 20 fields/methods and are good candidates for the
creation of new classes because they define a specific responsibility or semantics.

To increase the robustness of our approach, we need to define additional
rules related to the access of fields and methods by methods not only within
one class but also located in other associated classes. Moreover, our analysis is
purely static. Thus, we need to enhance our method with a dynamic analysis
to preserve the behavior of the program. Finally, the restructuring should be
semi-supervised by an expert because only experts could assess the relevance
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of grouping elements. The method should be seen as a support for restructur-
ing huge number of data. Thus, we share Snelting’s opinion that an interactive
restructuring performed by the software engineer is more appropriate [24].

6 Related Work

Few studies have explored the semi-automatic correction of design defects. Thus,
we only list work related to design defects and to the use of fca in software
maintenance.

Sahraoui et al. in [23] proposed an approach for identifying objects in pro-
cedural code, a problem that is similar to the split of a Blob (in this case the
Blob corresponds to the entire application or to a module thereof). The approach
combines metrics calculation with several FCA-based analysis steps in class iden-
tification and further graph-based reasoning to detect associations among newly
identified classes.

Snelting and Tip [24] proposed a FCA-based method for adapting a class hier-
archy to a specific usage thereof. It comprises a study of the way class members
are used in the client code of a set of applications. The study enables the identi-
fication of anomalies in the design of class hierarchies, e.g., class members that
are redundant or that can be moved into a derived class. In contrast, we detect
design defects at a higher level as specified in the literature. Moreover, beyond
pure hierarchies, we are interested in classes with associations.

Godin and Mili [7] used concept lattices for class hierarchy redesign based
on classes signatures. Yet like [11], they find useful hierarchy restructuring and
member redistribution but ignore any possible relationships among the members
of a class.

Marinescu [16] presented an approach based on detection strategies which ap-
plies metrics computation. Combinations of metrics through filtering and compo-
sition are used to capture deviations from good design principles and heuristics.
Yet the method is inherently limited as design flaws admit no easy detection
exclusively by metrics: the structure of a design matters and it is impossible to
capture in numbers. In contrast, our approach relies on a combination of metrics
for the detection of design defects with a clustering and visualisation technique,
fca, that allows the design structure to be fully comprehended.

The work of Kirk et al. [12] comes close to ours. Yet they use attribute slicing
to refactor large classes, i.e., they slice the variable set of the class into subsets
based on the usage of variables by methods. The approach was designed to deal
with the Large Class code smell and hence has a scope of a single class whereas
Blob involves multiple classes. Conversely, they use an intra-method slicing tech-
niques that allows the precise set of instruction manipulating a instance variable
to be detected and the isolated. The practical validation of the approach is yet
to be done.

Tonella and Antoniol used fca to infer recurring patterns in program models
[26]. Their study yielded impressive results in terms of groups of classes having
common structural relations. However, their approach seems of limited interest
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for us because it detects only structural relations, whereas design defects are of-
ten characterised by measurable properties (e.g., a large class has a large number
of fields and methods). fca is not devised to deal with numerical measurement,
hence it could benefit from metrics-based techniques.

Arévalo et al. [1] applied fca to identify implicit dependencies among classes
in program models (extracted from source code). A set of views at different levels
of abstraction are built: At the class level, views show the access of methods
to variables and the patterns of calls among methods in a class, hence they
help to assess the class cohesion. At the class hierarchy level, views highlight
common and irregular forms of hierarchies so as to deduce possible refactorings.
At the program level, they refined and extended the approach of Tonella et al.
to any (recurring) regularities such as design patterns, architectural constraints,
idioms, etc. Our approach is similar in that it detects flaws, but our choices of
the elements and properties to be analysed are guided by the descriptions of the
defects.

7 Conclusion

We proposed an approach that uses RCA to suggest appropriate refactorings to
correct certain design defects. In particular, we showed how our approach can
help refactoring programs with Blob design defects. Unlike other FCA-based re-
structuring approaches, we worked on whole lattice regions rather than on sep-
arate concepts because candidate refactoring are inferred from several concepts
in the lattice. We illustrated our approach using an example of a Library man-
agement system and validated it on Azureus v2.3.0.6 and three other programs.
We showed that using RCA, our approach could suggest relevant refactorings to
improve the program. The generalisation of our results to other design defects
is briefly discussed and will be developed in future work. Future work will also
include assessing more programs via our approach and discussing the proposed
refactorings with their developers and apply them. We also plan to performed
quantitative studies on the trade-off between cohesion and coupling.
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17. Moha, N., Guéhéneuc, Y.-G., Leduc, P.: Automatic generation of detection algo-
rithms for design defects. In: Proceedings of ASE (2006)

18. Moha, N., et al.: Using FCA to suggest refactorings to correct design defects. In:
Proceedings of CLA (2006)

19. Object Technology International / IBM. Eclipse platform – A universal tool plat-
form (2001)

20. Galicia (September 2005), http://sourceforge.net/projects/galicia/
21. Raţiu, D., et al.: Using history information to improve design flaws detection. In:

Proceedings of CSMR, pp. 223–232 (2004)
22. Riel, A.J.: Object-Oriented Design Heuristics. Addison-Wesley, Reading (1996)
23. Sahraoui, H.A., et al.: A concept formation based approach to object identification

in procedural code. Automated Software Eng. 6(4), 387–410 (1999)
24. Snelting, G., Tip, F.: Understanding class hierarchies using concept analysis. ACM

TOPLAS 22(3), 540–582 (2000)
25. Azureus (June 2003), http://azureus.sourceforge.net/
26. Tonella, P., Antoniol, G.: Object oriented design pattern inference. In: Proceedings

of ICSM, pp. 230–240 (1999)
27. Trifu, A., Dragos, I.: Strategy-based elimination of design flaws in object-oriented

systems. In: Proceedings of WOOR (2003)
28. Brown, W., et al.: AntiPatterns Refactoring Software, Architectures, and Projects

in Crisis. Robert Ipsen (1998)

http://sourceforge.net/projects/galicia/
http://azureus.sourceforge.net/


Contingency Structures and Concept Analysis

Alex Pogel and David Ozonoff

Physical Science Labortory, New Mexico State University, Las Cruces, NM 88003,
USA

Department of Environmental Health, Boston University School of Public Health,
Boston, MA 02118, USA

Alex.Pogel@psl.nmsu.edu, dozonoff@bu.edu

Abstract. Formal Concept Analysis has found many uses in knowl-
edge representation and data mining, but its penetration into established
data-based research disciplines has been slower. Marrying application
motivations, structures, and methods from epidemiology and the math-
ematical formalisms of FCA, we define Generalized Contingency Struc-
tures and Tagged Contingency Structures, two new objects that gener-
alize the contingency table, an ad hoc data summarization device in
epidemiology, to a mathematical object with well-understood structure.
We have extended the FCA repertoire by adding to the Formal Context
an associated structure that we call a Tag Context, which formally in-
corporates important kinds of background knowledge. We illustrate the
motivation and use of these new ideas, formats, and objects with some
brief examples.

The relationship between mathematics and its applications is most produc-
tive when each enriches the other. A mathematical formalism may be grafted
entirely onto an application without modification of either the application or
the mathematics - a conceptual isometry - but this is unusual and provides little
new to either partner in the complex dance that is applied mathematics. We de-
scribe here an interpretation of mathematical structures from Formal Concept
Analysis into epidemiology through which we expect the ideas and repertoire of
each discipline will be broadened and taken in new directions.

1 Epidemiology

Epidemiology is a core discipline in public health. But as Rothman and Green-
land observed in one of the major texts in the field [RG], there seem to be even
more definitions of epidemiology than epidemiologists. One widely used defini-
tion is the study of the patterns and determinants of disease in populations.

Describing the patterns of disease in populations is an epidemiological sub-
project often referred to as descriptive epidemiology. Patterns are descriptions of
how particular features in the data relate to each other. Features in descriptive
epidemiology are given in terms of attributes of an individual (person), such
as an individual’s location (place), or when the individual’s feature is observed
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(time or position in a sequence), or summary measures of these over the entire
population (e.g., median age). The patterns of health states by person, place, and
time are further described by how they co-occur (Who is getting the disease?
When? Where?) or how some health states are functionally related to others
(e.g. how a person’s blood pressure is related to their weight, or where cancer
occurs on a map). These data are much used for administrative purposes, for
example to support decisions on the need for facilities, to estimate the cost of
services, or to plan for targeting high risk groups, like pregnant women.

Thus in many respects there is a straightforward relationship between conven-
tional descriptive epidemiology (the co-occurrence of variable levels) and typical
applications of Formal Concept Analysis (FCA) and association rule mining; only
here the question is focused on which epidemiological features are associated. On
the other hand, epidemiology has its own data structures and conventions, due
to its particular set of motivating principles and corresponding historical devel-
opment. One of these is the widespread use of contingency tables to prepare and
analyze data, and there are many methods that flow from this format. Later in
this paper, we describe how the concept lattice can be viewed as a more general
version of a contingency table, and also introduce some analytic procedures that
reflect epidemiologists’ use of contingency tables.

Description is not the only goal in epidemiology, nor even the main goal. As
Rothman and Greenland [RG] suggest, the main goal is usually to understand
the determinants of the patterns:

If the subject of epidemiologic inquiry is taken to be the occurrence
of disease and other health outcomes, it is reasonable to infer that the
ultimate goal of most epidemiologic research is the elaboration of causes
that can explain patterns of disease occurrence.

Fixing the determinants of the pattern is the subject of analytic epidemiology,
Rothman’s “elaborations of causes.” This, too, is in the language of co-occurrence
or functional relationships, but now with directionality, from cause to effect
(never the other way around). Once the mysterious notion of causality enters
the picture with its directionality requirement, we need to employ theoretical
guesses or assertions about “how the world works.” We are not only carving out
certain features of the world (in descriptive epidemiology, health status according
to person, place, and time) but also employing background knowledge such as
tagging some of these features as explanatory variables or outcome variables
(causes or effects, respectively), or ancillary variables that are not of primary
interest but needed to understand the relationship of cause and effect (covariates;
age and gender are prime examples). Along with identifying these categories of
variables, we are in addition asserting that only specific forms of associations
meet the directionality requirement.

Causality [or as philosophers refer to it, causal necessity] is a slippery philo-
sophical concept. Most scientists do not fret over it unduly, believing that like
pornography, “they’ll know it when they see it.” But causality is a species of
association, i.e., a regular conjunction of certain types of events. We know many
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such associations are not causal in nature. There are two traditions of scientific
thinking regarding the hallmarks of causal associations [Spir], one traceable to
the Bernoullis and the other to Bacon and J. S. Mill. The first identifies causal-
ity with dependence (or lack of independence): one thing causes another if the
second is somehow dependent upon the first. This is the core of the statistical
approach. The second tradition is consistent with the first but adopts a more
empirical perspective: X causes Y if a change in X is always accompanied by
a change in Y , all other things being equal. The origin of this notion rests in
control. If you change the cause variable, all other things being equal, you expect
to see a change in the effect variable. The hallmark causal investigation in this
tradition is The Experiment. The investigator controls the independent variable
and observes the effects on other variables, all other things kept the same. Of
course all other things are rarely equal, so additional techniques to take into
account uncontrolled differences between the “cause-on” and “cause-off” exper-
iments are often required. When these other factors are unknown or not easy to
control, the crucial maneuver is to randomly assign the causal variable to two
different groups. This allows the use of well-recognized statistical techniques to
evaluate whether differences in outcome, possibly arising upon application of the
posited causal factor, are due to the factor or could be due to some uncontrolled
differences between the two groups.

Important branches of epidemiology employ experimental designs that allow
reasonably precise statements about the relationship between cause and effect.
For example, randomized clinical trials are used to determine the effect of var-
ious treatments on disease states. More often, however, we cannot control the
treatment (“cause”) variable for ethical or practical reasons and we are left to
observe real world events. In essence, we are looking for natural experiments,
such as comparing the health experience of asbestos workers with the health
experience of the general population. While we did not control who got exposed
and who didn’t, we are able to observe what happened to those who worked with
asbestos compared to those who didn’t. We then arrange our observations to be
as useful as possible, often using mathematical tools such as statistics to make
inferences about how the world works.

At the heart of these causal judgments is a comparison of various combina-
tions of variable states. One group has the causal factor while the other does
not, but in the real world there are usually many other differences as well. Con-
ventional statistical techniques employed in epidemiology compare the relative
frequencies of the different combinations of explanatory variables (causes) and
response variables (effects). Another approach would be to employ techniques
whereby comparison and co-occurrence are natural ideas and supported by rela-
tional structure, and Order Theory and FCA [DP, GW] provide well-developed
theories to build upon. We present in this paper an interpretation of epidemi-
ologic constructions in the concept lattice and discuss ways of introducing dis-
tinctions between cause, effect, and covariates to allow conceptual exploration
of the dataset in pursuit of the main epidemiological project of discerning the
determinants of patterns.
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2 Contingency Tables in Epidemiology

We enter the epidemiological arena at the point where data on a population
of individuals have been collected and arrayed in a table giving the value of a
health status indicator for each. In FCA this is a Formal Context, the result
of conceptual scaling of multi-valued data, and the starting point from which
concept lattices are constructed for various purposes, such as conceptual explo-
ration, knowledge discovery in data mining, and association rule mining (ARM).
In epidemiology further processing is usually done, so that the data is displayed
with less resolution but more clarity (for epidemiologists), in the form of a con-
tingency table. Contingency tables are widely used in epidemiology to prepare
categorical data for further exploration. The underlying idea is to display the
co-occurrence of health status of individuals in a study or target population, as
the first step in looking for or describing patterns of health status indicators by
person, place, or time, or for discerning causal associations between them.

A two-way contingency table classifies each object (in epidemiology the ob-
jects are almost always individual subjects) by two different health status vari-
ables. The variables are partitioned into levels or factors (by the process of
scaling, in FCA terms) - for example, male and female are levels or factors of
the variable sex, while 0, 1−10, 11−20, 21−100 are levels or factors of the vari-
able cigarettes smoked per day (abbreviated by CD in the sequel). The content
of a table cell is the cardinality of the set of objects that satisfy the conjunction
of the particular attribute levels of the variables that specify the cell in question.
If there are three variables of interest we have a three-way contingency table, a
“cubical” table, while four-way and higher tables can only be shown on paper by
slicing them into two- or three-way tables and displaying the slices separately,
or displaying them recursively, by nesting tables within cells.

While this is the first step in an epidemiologic exploration of the data, several
study design commitments have already been made prior to construction of the
table. The n subjects have been gathered together; health status variables of
interest have been selected; the variables for each subject have been assigned a
value by measurement; and the variables (features or attributes) have been scaled
by partitioning them into nominal or ordinal categories (known as conceptual
scaling in FCA). Probability models assume various processes for generating the
data. If the final population of n subjects is arrived at by counting the occur-
rence of a particular health status measurement during a fixed time period, we
often speak of Poisson sampling. If the number of n randomly selected subjects
has been fixed ahead of time, we speak of multinomial sampling. If the marginal
totals of either the rows or columns are fixed ahead of time we talk of indepen-
dent or product bi/multinomial sampling, while if the margins of both rows and
columns are fixed, we have hypergeometric sampling. The sampling scheme is
not signaled by the form of the table. To identify it, you also need to know how
the subjects were obtained. Nor does the form of the table reveal any informa-
tion about the accuracy or reliability of the measurement, that is, whether the
assigned value of a variable level to an individual is both correct and repeatable.
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Another aspect of contingency tables that is not obvious at first is that each
dimension of the table is a single variable and its levels are a partition of pos-
sible outcomes of measuring the variable in an individual. Because a partition
is mutually exclusive and exhaustive, the margins of the tables - the sum of all
the cells for each level of a variable - have a special meaning and can be used
for further analysis. For example, a common statistical question is whether the
rows and columns are independent of each other in the sense that a particular
level that specifies a row does or does not indicate a high likelihood that those
cases will fall into a particular column. Pearson’s chi-square statistic is a typical
statistical test used for this purpose, and it was observed in [SW] and elsewhere
that Pearson’s statistic can be used in the concept analysis context to deter-
mine dependence between two scales. Some common measures of association in
epidemiology, such as the odds ratio (OR), can be used appropriately for any
sampling scheme, while others, such as the relative risk (RR), only with some.
The OR is also symmetric with regard to directionality while the RR is not. For
many common situations, the OR and RR are very close to each other.

We now step back from the initial epidemiological maneuver, the construction
of a low dimensional contingency table whose variables are controlled by conven-
tion, hypothesis, or habit, and go back to the formal context, the epidemiologist’s
raw data.

3 Generalized and Tagged Contingency Structures

Standard statistical tests for contingency tables assume that the levels partition
the set of values of the variables. An immediate generalization is to relax that
requirement, allowing the factors or levels of each variable to overlap or nest, as
is common in various ordinal scales. In usual epidemiological practice, a single
contingency table, whether one-way (which is just a variable frequency table),
two-way, or multiway (cross-tabulations), is still a partial view of some com-
binations or patterns among features in the dataset, so another generalization
is to allow all possible conjunctions of attributes. Overall, we lose nothing use-
ful in contingency table analysis while gaining generality and the possibility of
using the language and theory of conceptual scaling within FCA. We now re-
call two generalizations of the contingency table presented in [OPH], and follow
these with some new definitions. We write N for the set of non-negative inte-
gers, K = (G, M, I) for a standard formal context, and Int(K) for the set of all
concept intents of K.

Definition: The generalized contingency table (GCT) of K is the function t :
P(M) → N, where t(A) = |A′|, for all A ∈ P(M); the closed set contingency
table (CSCT) of K is the function T : Int(K) → N where T (A) = |A′|, for all
A ∈ Int(K).

Like the conventional contingency table, the GCT and CSCT include only the
cardinality of the set of subjects that share a conjunction of levels of one or more
variables. The GCT represents a superset of the cells of any other conventional
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contingency table and is a rich mathematical object in its own right, unlike a sin-
gle conventional contingency table, which is only a fragment of the GCT with no
particular properties of its own. In the CSCT we clearly seek the same practical
gains from the reduction to closed attribute sets that makes FCA so attractive
in various knowledge representation and association rule mining algorithm de-
velopments [Pea, ZO]. In terms of expressive power, we can naturally extend the
GCT and CSCT by replacing the count of A cases with A′ itself, the extent of
the concept generated by A. This yields modifications of the definitions above,
where we change “table” to “structure” to reflect the use of extents, in place of
counts:

Definition: The generalized contingency structure of a formal context (G, M, I)
is the function t : P(M) → P(G) defined for each A ∈ P(M) by t(A) = A′.

Recall a semiconcept is a pair (A, B), with A ⊆ G, B ⊆ M , such that A ⊆
B′ or B ⊆ A′ [GW]. Thus, in FCA terms, an alternative description is that
the generalized contingency structure (GCS) is the set of all semiconcepts of
(G, M, I) of the form (B′, B), where B ⊆ M . Like the GCT, the GCS provides
a global view of co-occurrences of variables and their levels in the data, but also
includes a record of the cases that witnessed those co-occurrences. While there
is an obvious extension of the CSCT, to a definition of a closed set contingency
structure, this is entirely unnecessary, as this structure is precisely the concept
lattice, the set of ordered pairs (A′, A), where A ∈ Int(K).

Thus far, by directly generalizing (GCT), extending (GCS), and reducing
(from GCS to the concept lattice), we have found that the concept lattice is
a generalization of the contingency table, a major format for data reduction,
display, and analysis in epidemiology. Because we include the actual object sets
(the individual elements in the power set) and not just their cardinality, the
GCS and concept lattice include all the information in the formal context.

However, we have still not captured the background knowledge encoded in the
dimensions of a conventional contingency table. To provide a true generalization
of the contingency table, we must not only include support for additional struc-
tural features (such as object sets), but also include all that is tacitly implied to
an epidemiologist with a conventional contingency table. This means we must
incorporate into the GCS and the concept lattice those summaries and analyti-
cal actions an epidemiologist would make with a conventional contingency table,
including the directionality of associations, via recognition of the status of con-
stituents as cause, effect, or covariate. To remedy this deficiency, and support
later rule measure definitions that will capture the directionality requirement for
causation, we introduce tag contexts.

Definition: a tag context of (G, M, I) is a formal context (M, C, J).

The intention behind this definition is that M is the set of attributes of (G, M, I),
C is a set of classes (or tags) to which the attributes in M may belong, and J
indicates class membership. With this tag context we may easily identify subcon-
texts of (G, M, I) in terms of any intent D of (M, C, J), by setting (G, M, I)D =
(G, M ∩ DJ , I|G×D); (G, M, I)D is the restriction of (G, M, I) to the set DJ of
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attributes in the extent of concept (DJ , D) of (M, C, J). Many other works have
proposed similar augmentations to the base formal context. The appended tag
context is similar to the taxonomy employed in [CFRD], used there to avoid
redundancy in intents, except where the taxonomy is a relation on M , the
tag context indicates classes (usually disjoint from M) that reflect background
knowledge regarding the attributes. Since the tag context shares the set M with
(G, M, I), the addition of this auxiliary structure is closely related to the RCA
proposal in [RHNV], except that there the family of contexts is augmented with
a set of binary relations between the object sets.

As first described in [HKB] and cited in [RS], preliminary data from a health
survey in the Netherlands found an association between keeping pet birds and
increased risk of lung cancer. To test the association, epidemiologists compared
the frequency of bird keeping among 49 lung cancer patients from four hospitals
in the Netherlands with bird keeping in 98 urban residents who didn’t have lung
cancer. They also collected information about age, sex, and cigarette smoking
from all the subjects. The goal was to see if bird keeping was more common
among lung cancer patients than the general population after accounting for
other factors that might affect lung cancer risk. Table 1 shows an example of a
tag context (M, C, J) for a formal context (G, M, I) for which |M | = 20 ([URL]
presents the full Birdkeeping-LungCancer context), and the attribute class set
is C = {Cause, Effect, Covariate}.

Table 1. A tag context for the Birdkeeping-LungCancer context posted at [URL]

Cause Covariate Effect
Is A Birdkeeper (BK) X - -
Is not a Birdkeeper (¬BK) X - -
Cigarettes per day (CD) ≤ 20 - X -
Cigarettes per day (CD) ≤ 10 - X -
Cigarettes per day (CD) ≥ 20 - X -
Cigarettes per day (CD) ≥ 10 - X -
Years Smoking (YR) ≤ 20 - X -
Years Smoking (YR) ≤ 10 - X -
Years Smoking (YR) ≥ 20 - X -
Years Smoking (YR) ≥ 10 - X -
Has Lung Cancer (LC) - - X
Does Not Have Lung Cancer (¬LC) - - X
Socio-economic Status High (SS) - X -
Socio-economic Status Low (¬SS) - X -
Age ≤ 60 - X -
Age ≤ 50 - X -
Age ≥ 60 - X -
Age ≥ 50 - X -
Sex = Female - X -
Sex = Male - X -
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Now, to address the fact that background knowledge is encoded in the dimen-
sions of the contingency table, the causality aims of the study, and the choice of
effect measures (measures of strength of association), we augment the previously
defined structures with a tag context.

Definition: A tagged generalized contingency structure of a formal context
(G, M, I) is the GCS of (G, M, I) with a specified tag structure (M, C, J), and
a tagged core contingency structure of a formal context K = (G, M, I) is the
concept lattice B(K) with a specified tag structure (M, C, J).

With either of these tagged structures, we have sufficient expressive power to
capture standard epidemiological constructions over all the possible contingency
tables that can be formed from a given formal context. Later sections of this
paper explain how we use these structures to extend standard epidemiological
practice to these objects, and we are currently engaged in further work to com-
plete this vision. In [OPH] we connect the concept lattice diagram with the
conventional 2 × 2 contingency table that cross-classifies any two combinations
of variable levels. The rows and columns of each 2×2 table present a partition of
some variables X and Y , into attributes A and B, respectively, along with their
complements ¬A and ¬B, respectively. We focus on four particular cells: the up-
per left interior cell corresponds to |A′ ∩ B′|, the upper right and lower left cells
are the marginals |A′| and |B′|, respectively, and the bottom right corner (the
grand total) is the size |G| of the universal set G of subjects. Consequently, all
cells of such a contingency table are determined by the values of only these four
of its nine cells (the nine cells are the four interior cells, the four marginal totals
on the rows and columns, and the grand total). If one draws a Hasse diagram of
the order relations of these four cells, using the standard concept lattice conven-
tion of ordering attribute sets by reverse inclusion, this contingency table has
a naturally associated subdiagram (a diamond consisting of (G, G′), (A′, A′′),
(B′, B′′), and ((A ∪ B)′, (A ∪ B)′′) order embedded in the lattice diagram. An
example is shown in Figure 1 below.

Thus, every meet, (A′, A′′) ∧ (B′, B′′), in the concept lattice is a particular
two-way contingency table that cross-classifies with respect to attributes A and

Fig. 1. A 2 × 2 contingency table and the corresponding Hasse diagram
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B, and so each concept D is an equivalence class of two-way contingency tables
(representing the different meets of pairs of concepts that yield D). Further-
more, every two-way contingency table is (with an appropriate relation, regard-
ing equality of sets of cells) an equivalence class of rules, as, for example, A → B
and A → ¬B can be viewed as having the same two-way table).

All of the structures defined above are new objects of study for epidemiol-
ogy. Thus FCA has enlarged that discipline by directing its attention to new
constructions that have a mathematical and conceptual richness, and various
implementations and directions of algorithmic development. The concept lattice
provides a minimal global description of the dataset, with no loss of information,
and also provides a description of the hierarchical structure of the data, as visu-
alized in the lattice diagram. Moreover, specific subposets of the lattice diagram
are connected to the more familiar contingency tables of epidemiology. We now
use some of the maneuvers of epidemiology to increase the analytic capabilities
of the concept lattice in the epidemiological domain, and also in other domains
focused on determination of risk factors [HLK].

4 Epidemiological Association Rule Measures

Association rules are a centerpiece of data mining, and have well-known com-
putational links with the concept lattice, but they are a relatively weak form of
knowledge and their very abundance in even small datasets produces a serious
problem in applications [Im]. Epidemiologists often find little value in ARM, ei-
ther because the rules produced are trivial or redundant, or because they express
associations of no particular interest for the project at hand. Conversely, there
are often specific kinds of associations of particular interest, for example, those
relating putative causes with putative effects. We would like to discover associ-
ations with particular forms and to test whether they are simply expected ex-
pressions of internal combinatorial complexity rather than some external causal
necessity.

Epidemiologists work from the bottom up, first examining simple associations
between a few variables using low dimensional contingency tables or perhaps us-
ing a multivariate model such as logistic regression to incorporate more variables.
Even with multivariate methods, however, the number of interaction terms is
usually small, and the overall result is model-dependent. Only a highly selected
portion of the data is used and this frequently has additional structure imposed
upon it for ease of analysis (for example that some relationships between vari-
ables are linear). The lattice diagram, on the other hand, has all the richness
of the dataset but overwhelms the analyst with too much information and does
not incorporate subject-specific content or assumptions to help navigate around
features of little interest.

We now describe some ways the concept lattice diagram and association
rule lists can be made more useful for epidemiologists. Given the epidemiolog-
ical interpretation of the concept lattice discussed above, it is important that
the viewing of lattice diagrams incorporates two central epidemiological effect



314 A. Pogel and D. Ozonoff

measures used in contingency table analysis, namely, the Odds Ratio (OR) and
a measure of its precision, the confidence interval. After recalling these two mea-
sures, we turn to some new rule measures based upon causation’s directionality
requirement. The new measures are computed through reference to the tag con-
text that is part of each tagged structure, as defined in the previous section. In
the next section we describe how these measures may be used in a highlighting
scheme to help view a concept lattice diagram, and finally we display examples
of these methods in a software implementation.

Support and confidence both offer natural pruning capabilities in associa-
tion rule generation and have often been used to define the central problem of
ARM (the overwhelming amount of information it generates), despite the limited
utility offered by these measures in most applications. Many other association
measures can be computed for each conjunctive association rule A → B, includ-
ing lift, prevalence ratio, conviction, and leverage. Here we recall the definition
of two rule measures that are very useful for practicing epidemiologists:

– Odds Ratio: odds of B given A divided by the odds of B given ¬A, i.e.

|A′∩B′|
|A′∩(G\B′)|
|(G\A′)∩B′|

|(G\A′)∩(G\B′)|

– (Test-based) Confidence Interval of Odds Ratio: The range of values of the
odds ratio that would give a p-value greater than a stipulated nominal value
(e.g., 5%), assuming only random error, here expressed as [OR95-, OR95+].

Now we use the tag context within any tagged structure defined over (G, M, I)
to define two rule measures that capture, to varying degrees of specificity, the
directionality requirement for causation:

Definition: Association rule A → B of (G, M, I) has

– PremisePurity(A → B) = Maxc∈C(cJ∩A)
|A| ,

– ConclusionPurity(A → B) = Maxc∈C(cJ∩B)
|B| , and

– Purity(A → B) = PremisePurity(A → B) ∗ ConclusionPurity(A → B).

Definition: If (M, C, J) is the tag context in a tagged structure of (G, M, I), and
C → D is a conjunctive association rule of (M, C, J), we say that conjunctive
rule A → B of (G, M, I) has the form C → D provided that A ⊆ C′ and B ⊆ D′.

Example: The Tag Context in Table 1 is sufficient to express that association
rules from (G, M, I) have forms such as Cause→Effect, Covariate→Effect, or
Covariate→Cause.

Of course, rules of the simple Forms in this example also have Purity= 1. Noth-
ing in the definition of Form requires such simplicity - any concept intents of
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(M, C, J) can be used to express the premise and conclusion constraints for
Form. We note that Purity and Form are related measures: those association
rules of (G, M, I) with tag context (M, C, J) that satisfy Purity= 1 are precisely
those rules of the Form c → d, for some attributes c, d ∈ C. Also, since Pu-
rity is [0, 1]-valued, it can be used to express conditions such as Purity≥ v for
some fixed value v ∈ [0, 1], in order to filter a set of association rules to those of
sufficiently high Purity.

5 Highlighting Concepts Via Rule Measure Conditions

[Bec] discussed the implementation within ToscanaJ of the annotation of lattice
diagrams with results of numerical computations. We have a similar aim in this
section, since we want to describe how to highlight particular concepts that wit-
ness association rules satisfying specific constraints based on rule measures, and
display a simple example. We view concepts as equivalence classes of association
rules that are expressed as bipartitions of key sets, and we then discuss how to
use highlighting to communicate which concepts and rules in a potentially large
lattice diagram satisfy rule measures of interest. For examples of larger lattices,
which would be space prohibitive for this paper, see [URL].

We recall that each association rule A → B has its support witnessed by the
extent of the concept (A′, A′′) ∧ (B′, B′′). Of course, multiple association rules
are witnessed by any one concept with more than one element in its intent;
for a simple example, suppose A 
= B, and consider A → B and B → A,
and for any b ∈ B, A ∪ b → B \ b; all these rules are witnessed by the same
concept ((A ∪ B)′, (A ∪ B)′′). With this observation as a backdrop, we note
that our method for generating rules from a concept D is to determine each
bipartition K1 �K2 of each K ∈ K(D), where K(D) is the set of key (attribute)
sets of concept D, and then check whether the rule K1 → K2 satisfies each
of a list of rule-based criteria, such as OR ≥ 2, Lift > 1.1 and Purity = 1; if
any such rule passes, then concept D will maintain its usual color, else it will
be colored light gray (thereby highlighting the concepts that pass the set of
criteria). Furthermore, for any concepts that remain normally colored (i.e. that
are highlighted), a mouse-click on the concept indicates on the lattice diagram
(via the standard concept analysis convention of writing attribute labels above
the associated concept node) a key set rule that passed the rule measure filter,
and at another window, it shows all the rules of this same form that passed the
rule measure filter. An example highlighting this method is shown in the last
part of this section.

At the current level of development of rule mining in Seqer, the user is provided
the ability to select which attributes from the current subcontext are potential
premises and which are potential conclusions. For example, in the upper left part
of the screen shown below in Figure 2, we have chosen all attributes except LC
and ¬LC as Premise attributes, and only LC and ¬LC as Conclusion attributes.
This selection screen allows the user to restrict attention to rules that have a
particular form, e.g. Cause→Effect. Rules are generated by computing a concept
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lattice from the premise subcontext (the restriction of the attribute set of the
current subcontext to those checked as premise attributes) and similarly com-
puting a lattice for the conclusion subcontext. Only rules of the form Ip → Ic

are generated and then filtered, where Ip is an intent of a concept in the premise
lattice and Ic is an intent of a concept in the conclusion lattice.

If we choose the entire attribute set of the Lung Cancer and Bird Keeping
formal context [URL], for both the Premise and Conclusion subcontexts, and
we use the filter [ Support ≥ 0.02, Confidence ≥ 0.1, OR 95-≥ 1.1 , OR≥ 1.5,
OR95+≥ 2.0, Premise Depth <= 4 and Conclusion Depth = 11 ] then the AR
algorithm just described returns (502) rules; however, if we add the condition
Purity = 1 to the filter list, this total of (502) is reduced to (121) generated
rules. Not only are there less rules to contend with, but they gain interpretability
through the application of purity.

Fig. 2. Form is applied through choice of premise and conclusion attributes, and then
thefilters applied at right have allowed the selection of the top three OR95- rules from
the list of (32)

Similarly, if we enforce form as described above, by removing Lung Cancer
from the premises and setting Lung Cancer as the only possible conclusion, and
if we do not include Purity = 1 (but keep the same filters described above),
the ARM algorithm yields (83) rules, whereas adding Purity = 1 in this case
1 Here “depth” refers to the cardinality of the set of attributes in the premise or

attribute conjunctions in the rule.
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reduces the set to only (32) rules. In this case, the reason is that various Cause
and Covariate attributes are combining in premises, and these combinations are
denied once the Purity = 1 condition is applied.

Seqer allows the set of attributes in any selected set of rules to determine the
attributes of a subcontext of the current context, whenever the user requests this
additional focus. In the latter table of (32) rules, if we isolate our attention to the
attributes involved in the top three rules, namely, the four attributes YR≥ 20,
CD ≥ 10, BK, and LC, we get a simplified lattice diagram with (16) concepts;
Figure 3 indicates how the highlighting scheme functions in this example. Here
we have applied rule filter criteria that will highlight only a small number of
the concepts in the diagram, including OR95- ≥ 1.5, and OR ≥ 2 and OR95+
≥ 3, and a few other criteria. In the diagram in Figure 3, Seqer has responded
to a user’s mouse-click on a highlighted concept by revealing the rule(s) that
caused the concept to be highlighted in the first place; here the rule is BK→LC,
following a mouse-click on the dark concept near bottom.

Notice that of the (15) concepts in the lattice diagram, there are roughly (8)
concept clusters, after an application of the spring-based lattice drawing algo-
rithm in [HP]. The cluster at the bottom of the lattice includes the universal
lower bound and two other related concepts; that universal lower bound is ob-
viously the meet of all four attributes, but it is interesting to note that it has

Fig. 3. The lattice of the subcontext determined by the three highest OR95- rules;
with the highlighting scheme, we see the rule BK→LC
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support 19.7%, versus the common value of 0% for the bottom of the lattice. In
this lattice diagram, since concept height is determined by support of concept,
as in [PHM], we witness the approximate numerical values of all the cell values
underlying all the 2 × 2 contingency tables that can be formed from the set of
attributes in the three highest OR95- rules from the original set of rules. Not
only are the rules available (via mouse-click on concepts, as shown above), but
the origination of their effect measure values are also directly apparent, through
identification of the appropriate diamond subposet that corresponds to the un-
derlying contingency table (as in Figure 1 and [OPH]).

Diagram-based variants of the zooming method seen in this example (wherein
a lattice was derived from rules that passed a filter) are also available within
Seqer. For example, from a large, complex lattice derived from the Birdkeeping-
LungCancer formal context, the user can request the subdiagram consisting of
only those concepts below the concept (LC′, LC′′) whose support exceeds x% of
the support of (LC′, LC′′) (say, with x = 80), and then select in a subcontext
only those attributes related to the filtered set of concepts, and then generate
ARs from this selected set of attributes, filter the results using rule measure
conditions, and again restrict attention to the lattice generated by some smaller
set of attributes determined by filtering the rules. See [URL] for examples of
such conceptual exploration sequences. In general, Seqer has been designed to
support iterative interactions between subcontext selection, a variety of lattice
diagram manipulations, and association rule filtering, all within a single instance
of the software.

In this paper, we have introduced some new structures within Formal Concept
Analysis that we believe are of interest in epidemiological practice. A future pa-
per will explain the overall design and conceptual exploration capabilities of Se-
qer2 and introduce ACE3, an open source concept software project that provides
many of the core functionalities of Seqer, to be posted at sourceforge.net by late
2008. We also note that the background knowledge represented by a given tag
context T = (M, C, J) for a formal context K = (G, M, I) can be used to capture
the dimensionality criteria and simultaneously reduce the portion of B(K) that is
visualized, through the production of a system S = {B(KD)}D∈B(T) of concept
lattices indexed by B(T), where KD = (G, D, I). The lattices B((G, M, I)D) can
be considered individually, or can be used to control searches for concepts that
express meets of concepts in distinct lattices in the system, thereby witnessing
rules of particular forms. The foundations laid in this paper will support further
development of these ideas.
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Aims and results
In the direction of researches on formalization in the social sciences [6,1,7], several
papers were devoted to analyzing the dual interplay between cultural components
(categories of words) and actual practices (welfare treatments, programs ...). A first
analysis of poverty in NY City in 1888 - 1917 [6] was undertaken in a joint work, with
the description of relief treatments by words to investigate their institutional logic.

By making use of the abilities of lattices to analyze the duality treatments × words,
a second note [1] refined this analysis along three directions. First, to screen the
source data with the basic toolkit of FCA [10, 4 …] and Lattice Analysis [2] (orders
on words, treatments, concept lattices ...). Then, to make use of a second tool set for
elaborating more synthetic views of the data source structures with canonical basis of
implications [5], lattice splits generated by transpositions / double arrows expressing
incompatibilities between words / treatments, and lattice ungluing decompositions [4]
into intervals that expresses similarities between words or treatments and provides an
objective and faithful way for dismantling the ordinal data structure. The third
direction compares the findings in 1888 / 1917, and addresses the question of what
was either stable, or different between these two points in time through a formal
comparison using simple if not simplistic consensus by context union / intersection.

The aim of the present work is to elaborate and experiment new algorithms for
pointing out more systematically what is new or unmoved concerning orders and
lattice structures, as they change through time (see Fig. 1-2), and to test them on the
original data set. To this end, we will mix together and make use of specific / relative
basis of implications [3] that naturally occur when apposition and subposition of
contexts have to be considered, together with subdirect products of lattices (see
Fig. 3) that have been used in particular for context fusion [11], as a natural candidate
for lattice consensus. The outcome is to give a simultaneous representation of the two
data sets providing new ways to explore and characterize practice / cultural changes.
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Fig. 1.  The concept lattice treatments × words (1888), together with the two canonical basis of 
implications of implications on conjunctions of words (left) and treatments (right hand side)

Fig. 2.  The concept lattice treatments × words (1917), with its canonical basis of implications 
characterizing minimally discrepancy to treatment / word powersets
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As for the results, both treatment × word lattices (for 1888 and 1917) are quite small
as compared with the potential 211 elements (26 and 18 elements respectively). This
reveals a lot of implications between conjunctions of words (or treatments, dually),
which are summarized by their canonical basis of implications (see Fig. 1-2, where
the lattices are minimally labeled [8]). Most of their implications have a single
premise, which means that these lattices are nearly distributive. Actually the intervals
above s:shelter and i:investigation (in the two lattices, respectively) are distributive.
Interestingly, these two lattices are decomposable in unglued intervals [4 §5.2] which
assesses similarities [1] between words (/ treatments) respecting the global structure.

1888 reveals the splits treatment / word (transpositions expressed by double
arrows in the contexts see [4]): paidWork / NEEDY, investigation / DESTITUTE,
advise /  INDIGENT, findJob / WORTHY, give$ / HOMELESS, food / FALLEN, and
asylum / STRANGER. As shocking as it could appear now, in 1888 one gave asylum -
except to strangers!-, or money –except to HOMELESS!- etc. Similarly, 1917 displays
the splits: jobTrain / NEEDY, food-shelter-asylum / DISTRESSED, advise / WORTHY
and give$ / HOMELESS as it was already the case in 1888. As local negations, these
splits capture fundamental distinctions in systems of moral boundaries of these times.

Now a first natural idea for comparing these two lattices is to glue their contexts
horizontally by taking their apposition (resp. vertically subposition), and to construct
the corresponding lattice which is join-embedded (resp. meet-) in their direct product,
as it is implicitly done with nested line diagrams [10], and to distinguish two specific
basis [1] of implications going from one set to another (ex: 1888 ↔ 1917 words).

Fig. 3. The fusion of the 1888 & 1917 lattices is embedded in their direct product and
is also gluing decomposable. The two relative basis of implications (1888 / 1917 =
lower / upper-case letters) express discrepancy to direct product and independence.
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This is specially adapted when a single set of objects is described through two
different sets of attributes with a dissymmetry between object / attribute rôles. In our
present case however, there is a symmetry words / treatments which are equally
conceptual. On the other hand two pairs of different sets are needed to distinguish
them for these two periods.  Hence, let (T1,W1,I1) and (T2,W2,I2) be the 1888 / 1917
contexts and L1 = L(T1,W1,I1), L2 = L(T2,W2,I2) their concept lattices. The fusion (see
[11, 4 §5.1]) of these contexts is the context generating the smallest sublattice of
L1 × L2 the relation of which being a superset of the relation obtained by subposition
of the two appositions (I1  I1∪I2), and (I1∪I2  I2). This subdirect product construction
is highly symmetric regarding the two original contexts, as well as
words & treatments. The two relative basis of implications mixed together
characterize minimally the discrepancy to direct product (taken as a starting lattice
[3,9] or as background knowledge [8]), and the underlying meet / join morphisms
between factors. After implementation through GLAD [2], the resulting lattice (see
Fig. 3) appears to be gluing decomposable, which allows detecting attributes that are
structurally similar (m:misfortune / G:deserving,…) or stable (distressed, stranger,
fallen…) in time, which now requires careful screenings and further interpretations.
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